数据中心GPU芯片性能参数速查表(Nvidia+国产算力卡)

前言:在算力即生产力的时代,数据中心GPU已成为驱动人工智能、科学计算、图形渲染、大数据分析等核心业务的关键引擎。为了帮助广大科研人员、工程师、技术爱好者以及相关从业者能够快速、准确地了解不同 GPU 芯片的性能参数,以便更好地选择适合自身需求的产品,本文将涵盖 Nvidia 和国产各系列数据中心 GPU 芯片的关键性能指标,如计算能力、显存容量与带宽、多实例 GPU 支持情况、互连技术等,无论是进行新系统规划、旧集群扩容,还是评估不同平台上的应用性能潜力,为技术选型、成本效益分析和性能预估提供数据基础。

        Nvidia的数据中心用GPU芯片,不断更新迭代新的架构。不同架构下的 GPU芯片,其性能参数大相径庭。在计算能力方面,从早期架构到如今的先进架构,CUDA 核心数量不断增加,如从 Kepler 架构开始,SM 单元中的 CUDA 核心数大幅提升,这使得通用计算能力得到极大增强。每代的架构,都会以一个著名科学家的名字命名,截止目前,已经有 11 款芯片架构代号取自科学家名字。如下所示:

        国内主要GPU芯片厂商有HW、海光、昆仑芯、寒武纪、摩尔线程、壁仞科技等。目前的主流型号在性能上虽与Nvidia先进架构芯片仍存在一定差距,但也在不断追赶。例如海光的某些型号芯片,其计算核心数量在逐步增加,浮点运算性能等关键指标也在持续优化,能够满足国内一些特定场景下的计算需求,像在部分数据中心的AI推理任务中,华为昇腾系已有较为成熟的应用案例。而摩尔线程等厂商也在积极投入研发,不断推出新的架构和型号,致力于提升GPU芯片在图形渲染、并行计算等多方面的性能,以更好地适配国内日益增长的高性能计算需求,推动国产GPU芯片产业的发展。

一、Nvidia系

算力计算大致方法

  • FP16 稀疏算力 = 2 x FP16 非稀疏算力 = 2 x TF32 算力

  • FP16 非稀疏算力 = TF32 算力

  • 在Hopper架构(如H100)上,关系类似,但具体数值大幅提升

1.Ampere

RTX A6000

A100-40G

A100-80G

A800-40G

A800-80G

2.Hopper

H100

H800

H200

H20

3.Ada Lovelace

RTX 4000 Ada

RXT 5000 Ada

RTX 6000 Ada

4.Blackwell

二、HW系

1.shengteng910β

        910β系列内部分为4个型号,即B1\B2\B3\B4,在单卡算力和显存上有一定的区别,具体参数如下:

NPU 型号FP16 算力显存对应整机型号
shengteng Ascend 910β4280T32GB/64GBAtlas 800I A2
shengteng Ascend 910β3313T64GB HBM2Atlas 800T A2
shengteng Ascend 910β2376T64GB HBM2Atlas 9000A2 Pod
shengteng Ascend 910β1414T64GB HBM2

        整机的910B服务器配置8 个shengteng910 AI 处理器(NPU 模组),每个NPU 模组通过一路PCIe 4.0 x16 与CPU 主板对接,每个NPU 模组直出1*200GE,通过NPU 模组本身自带高速Serdes 接口完成。在计算整机算力时需要*8,以B2为例,单卡算力376TFLOPS,8卡整机提供的算力则为3.008PFLOPS。每个NPU 模组提供七路带宽双向为56GB/s 的HCCS,实现8 个NPU 模组Full Mesh 连接。提供最大392GB/s(56GB/s*7)能力。HBM最大支持480GB,带宽速率最大为1600GB/s。在服务器内通过此命令可以查看单卡算力:

#  ascend-dmi -f -t fp16

三、海光-DCU

海光的K100/K100 AI是市面使用主要芯片,该芯片对标英伟达A800,对Hygon、AMD、Intel等平台整体兼容 / 国内外主流OS全面适配。DCU Tool Kit(DTK):全自主计算平台与主流生态高效兼容(CUDA/ROCM),支持自研算子和最新三方组件;AI框架层以上程序无需转码,直接编译运行。DTK最新版本24.04

### NVIDIA 全部 GPU 显卡规格参数对比 创建一份全面覆盖所有NVIDIA GPU显卡的信息速查表是一项复杂的工作,因为这涉及到多个产品线和不同年代的产品。然而,可以构建一个简化版的表格来展示主要特性和参数。 #### 表格概述 此表格将涵盖几个重要的NVIDIA GPU系列及其关键特性: | **系列名称** | **发布年份范围** | **典型应用领域** | **核心架构** | **最大CUDA核数** | **内存带宽 (GB/s)** | |--|---------------------|----------------------| | GeForce | 1999 - 至今 | 游戏、消费级计 | Maxwell, Pascal, Turing, Ampere等 | 变化较大 | 不同型号差异显著 | | Quadro | 2000 - 至今 | 专业图形处理 | 同上 | 更多 | 较高 | | Tesla | 2007 - 2018 | 科学计、AI训练 | Fermi, Kepler, Pascal | 大量 | 极高 | | DGX Station / A100 | 2020 - 至今 | 数据中心高性能计 | Ampere | 非常大 | 极其高效 | 请注意上述数据仅为概览性质,并未详尽列出每一代产品的具体数值;对于更详细的比较,建议查阅官方文档或特定时期的硬件评测报告[^1]。 为了获取最精确的数据,推荐访问[NVIDIA官方网站](https://www.nvidia.com/)上的各个系列产品页面,那里提供了最新的技术白皮书和技术手册下载链接,能够帮助获得更加准确的技术细节和支持信息。 此外,在Linux环境下可以通过命令行工具`nvidia-smi`实时查看当前系统的GPU状态及性能指标[^4]。 ```bash $ nvidia-smi ``` 该命令会显示有关已安装设备的各种统计信息,包括但不限于利用率百分比、温度读数以及其他运行状况监测值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值