11、Jython:Java与Python融合的编程利器

Jython:Java与Python融合的编程利器

1. Jython简介

Jython是Java和Python这两种广受欢迎的编程语言的结合体。Java被众多组织广泛应用于特定应用程序的开发,拥有庞大的类库和完善的文档;而Python则以其灵活性、快速开发能力和易用性著称。Jython让开发者可以在Java或Python中实现任何类、算法和模式,同时保持两种语言之间近乎无缝的操作。

与其他语言扩展不同,Jython能无缝集成Java,可直接导入、使用甚至继承任何Java类,还能将Jython代码编译成Java字节码在Java框架中运行,也能在Java中导入、使用和继承Python类。

Java和Jython存在一些差异,Java是静态类型的富类型语言,有包和类,需编译,类有访问修饰符;而Jython使用动态类型,无需显式类型声明,有包、模块、类和函数,可交互式运行、解释未编译脚本或编译成字节码,访问限制较少。但这些差异使它们成为理想的互补语言,Jython的交互式模式便于测试和探索Java类,Java的接口和抽象类可为Jython子类指定协议,Jython的动态类型利于快速原型开发,Java的静态类型则提高运行时效率和类型安全性。

2. Jython的历史

Jython最初由Jim Hugunin开发,名为JPython。后来因他有机会开发aspectj而无法继续,Barry Warsaw成为项目负责人。之后,项目从CNRI过渡到Sourceforge的更开放开发模式,Finn Bock接手项目,他的大量优质贡献使Jython成为有价值的工具。Samuele Pedroni也是近期的重要贡献者,他在Jython的类加载、导入机制等方面

【源码免费下载链接】:https://renmaiwang.cn/s/jxhw8 MQTT(Message Queuing Telemetry Transport)是一种轻量级的发布/订阅消息协议,常用于物联网(IoT)设备之间的通信,因为它的低带宽、低功耗和简单性。在Android平台上实现MQTT推送,可以帮助开发者高效地进行实时数据传输,比如应用通知、设备状态更新等。下面将详细介绍如何在Android上实现MQTTDemo。我们需要理解MQTT协议的基本概念:1. **发布/订阅模型**:MQTT基于发布者订阅者的模式,发布者发送消息到特定主题,订阅者根据感兴趣的主题接收消息。2. **QoS级别**:MQTT定义了三种服务质量(QoS)等级,QoS 0(至多一次)、QoS 1(至少一次)和QoS 2(恰好一次),确保消息传递的可靠性和效率。3. **连接断开**:客户端通过CONNECT报文建立连接,DISCONNECT报文断开连接,PINGREQ和PINGRESP用于心跳检测保持连接。4. **主题**:类似于广播频道,客户端可以发布和订阅不同主题的消息。接下来,我们将在Android上实现MQTTDemo,主要步骤如下:1. **选择MQTT库**:Android开发中常用的MQTT库有Paho MQTT Android Service和mosquitto。这里以Paho为例,它提供了AndroidService和Client两个类,方便我们在Android应用中集成MQTT功能。2. **添加依赖**:在项目的build.gradle文件中添加Paho MQTT的依赖: ```groovy implementation org.eclipse.paho:org.eclipse.paho.android.service:1.2.5 ```3. **初始化MQ
内容概要:本文介绍了一个基于MATLAB实现的EEMD-TCN混合模型项目,用于中短期天气预测。该方法结合集成经验模态分解(EEMD)时序卷积网络(TCN),通过EEMD将非平稳气象时间序列分解为多个本征模态函数(IMF)分量,提升信号平稳性可解释性;再利用TCN对各IMF分量进行独立建模,捕捉长短时依赖关系,最后集成预测结果并重构为最终输出。项目涵盖完整的模型架构,包括数据预处理、EEMD分解、特征提取、TCN建模、多分量集成、超参数优化、评估可视化及实时业务集成模块,并提供了部分代码示例和技术解决方案。该模型有效提升了气象预测的精度、稳定性智能化水平。; 适合人群:具备一定信号处理机器学习基础,从事气象预测、时间序列分析或AI应用研究的科研人员及工程技术人员,尤其是熟悉MATLAB环境的研发人员; 使用场景及目标:①应对气象数据非平稳、噪声强、多变量耦合等挑战,提升温度、湿度、风速、降水量等变量的中短期预测精度;②构建高可解释性的智能预测系统,支持防灾减灾、能源调度、农业生产等领域的决策支持;③推动气象业务向自动化、智能化转型; 阅读建议:建议结合文中提供的模型架构代码示例,动手复现各模块流程,重点关注EEMD参数设置、TCN网络设计及多分量集成策略,同时配合实际气象数据进行调参验证,以深入掌握该混合模型的核心机制应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值