基于视觉的婴儿事故前状态检测

一种用于室内婴儿的视觉监控方法

摘要

我们提出了一种用于检测房间内婴儿(学龄前儿童)事故前状态的方法。婴儿的意外事故主要与房间内的物体相关,例如从椅子上跌落、加热器引起的烧伤、误食等。因此,该方法通过视频图像识别房间内每个婴儿的状态(位置、姿势和动作),结合房间模型分析婴儿与指定物体(地点)之间的关系,进而检测婴儿的事故前状态,例如接近危险区域、在关键位置失去平衡以及接触不安全物体。

索引术语

视觉监控, 婴儿, 意外事故, 事故前状态, 房间模型

一、引言

近年来,婴儿(学龄前儿童)经常需要呼叫救护车,其中最常见的原因之一是房间内的意外事故[1]。能够检测房间内婴儿的事故前状态并向其周围成年人发出警告的系统,将有助于防止婴儿发生此类意外事故。

已有多种方法被提出用于监测老年人在房间内的健康与安全状况[2],[3]。其中大多数方法通过老年人的姿势和动作(如跌倒或蹲下)来检测异常情况。与老年人的姿势和动作相比,婴儿的姿势和动作更加多样化。因此,仅通过姿势和动作来检测婴儿的异常情况较为困难。此外,房间内婴儿的意外事故主要与附近物体有关,例如从椅子上跌落、加热器引起的烧伤以及误食[4]。因此,现有未考虑人员与附近物体关系的监控方法无法适用于检测房间内婴儿的事故前状态。

本文提出了一种针对房间内婴儿的视觉监控方法。该方法通过视频图像识别房间内婴儿的状态(位置、姿势和动作),结合房间模型确定每个婴儿与指定物体(地点)之间的关系,进而检测婴儿的事故前状态,例如接近危险区域、在关键位置失去平衡以及接触不安全物体,如图1所示。该方法不仅考虑了婴儿的姿势和动作,还考虑了婴儿与附近物体之间的关系,有望有效检测房间内婴儿的事故前状态。

示意图0

II. 相关工作

针对包括婴儿在内的人员状态监测,已提出多种方法。

[5]中的方法通过使用压力分布床垫的压力模式来对婴儿的姿势进行分类。[6]中的方法通过使用安装在婴儿身体上的惯性与磁测量单元以及压力分布床垫的数据来估计婴儿的姿势。这些使用摄像头以外多种传感器的方法仅能应用于受限环境。此外,尽管这些方法能够获取婴儿的状态,但无法获取婴儿与附近物体之间的关系。

视觉监控方法利用摄像头作为传感器,不仅被提出用于老年人,也适用于婴儿。文献[7]中的方法通过学习老年人的姿势来检测跌倒情况。文献[8]中的方法通过学习事故场景图像来预测婴儿事故。这些视觉监控方法可应用于多种环境,并能够获取人与附近物体之间的关系。然而,现有的方法并未考虑人与附近物体之间的关系,因此无法有效检测与物体相关的婴儿事故前状态。

III. 房间内婴儿的视觉监控

在所提出的方法中,首先从视频图像中识别房间内婴儿的状态,然后参考房间模型确定婴儿与指定物体(位置)之间的关系,最后检测婴儿的事故前状态。

图像中的位置用 U‐V坐标表示,房间中的位置用 X‐ Y‐Z坐标表示,其中房间的地板设为 Y= 0。假设摄像机在房间中的位置已知,且摄像头已预先校准。

A. 构建房间模型

将婴儿生活的房间建模为不同大小的盒子(长方体)的组合。整个房间用最大盒子进行近似。房间中的大型物体(例如家具和斜坡)分别用小盒子进行近似,并放置在最大盒子内部。

通过指定与某些物体(如加热器和电风扇)相对应的盒子来表示其周围的危险区域位置。对于其他类型的危险区域,如窗户、门和墙壁插座,它们的位置直接标注在最大盒子的内表面上。

B. 识别婴儿状态

近年来,人体检测技术取得了巨大进展,使我们能够从图像中准确提取人体部位。通过使用其中一项技术(OpenPose [9]),从视频图像中提取每个婴儿的骨骼(一组身体部位关键点)。

通常,一些提取的关键点几乎会接触到房间内的表面(例如地板、桌面、椅子座位)。它们在 X‐Y‐Z坐标系中的位置可根据其在 U‐V坐标系中的位置计算得出。对于其他关键点,通过参考婴儿标准比例,从其在 U‐V坐标系中的位置估计其在 X‐Y‐Z坐标系中的位置。因此,可识别出房间内每个婴儿的状态(位置、姿势和动作)。

C. 确定婴儿与物体的关系

通过参考房间模型,根据婴儿状态确定每个婴儿与房间内指定物体(地点)之间的关系。根据所确定的关系,可以检测婴儿的事故前状态,例如接近危险区域、在关键位置失去平衡以及接触不安全物体。

房间模型中包含了家具和斜坡等大型物体,但未包含别针、剪刀、掉落的香烟等小型物体。通过应用背景减除技术[10],,可以确定这些小型物体的动作。因此,通过婴儿与小型物体之间的动作关系,可检测到误食等意外事故。

IV. 初步实验

作为初步实验,我们采用所提出的方法进行婴儿位置和姿势识别。在实验中,使用了一个58厘米高的婴儿玩偶,并将一个摄像头设置在距离玩偶240厘米处。通过所提出的方法估计玩偶的位置和姿势,从估计结果中获取其在地板(X‐Z平面)上的凸包区域,并计算该区域与真实值之间的交并比(IoU)。

示意图1

实验结果(四种姿势)如图2所示。尽管坐和站立姿势的交并比(IoU)不是很高,但所提出的方法可用于检测婴儿接近危险区域的事故前状态。

五、结论与未来工作

本文提出了一种针对房间内婴儿的视觉监控方法。通过不仅考虑婴儿的姿势和动作,还考虑其与附近物体的关系,该方法有望有效检测房间内婴儿的事故前状态。通过初步实验,我们确认了所提出的方法能够从视频图像中识别婴儿的状态。我们计划基于所提出的方法实现一个原型系统,并评估该方法在检测房间内婴儿事故前状态方面的有效性。

【源码免费下载链接】:https://renmaiwang.cn/s/jxhw8 MQTT(Message Queuing Telemetry Transport)是一种轻量级的发布/订阅消息协议,常用于物联网(IoT)设备之间的通信,因为它的低带宽、低功耗和简单性。在Android平台上实现MQTT推送,可以帮助开发者高效地进行实时数据传输,比如应用通知、设备状态更新等。下面将详细介绍如何在Android上实现MQTTDemo。我们需要理解MQTT协议的基本概念:1. **发布/订阅模型**:MQTT基于发布者与订阅者的模式,发布者发送消息到特定主题,订阅者根据感兴趣的主题接收消息。2. **QoS级别**:MQTT定义了三种服务质量(QoS)等级,QoS 0(至多一次)、QoS 1(至少一次)和QoS 2(恰好一次),确保消息传递的可靠性和效率。3. **连接与断开**:客户端通过CONNECT报文建立连接,DISCONNECT报文断开连接,PINGREQ和PINGRESP用于心跳检测保持连接。4. **主题**:类似于广播频道,客户端可以发布和订阅不同主题的消息。接下来,我们将在Android上实现MQTTDemo,主要步骤如下:1. **选择MQTT库**:Android开发中常用的MQTT库有Paho MQTT Android Service和mosquitto。这里以Paho为例,它提供了AndroidService和Client两个类,方便我们在Android应用中集成MQTT功能。2. **添加依赖**:在项目的build.gradle文件中添加Paho MQTT的依赖: ```groovy implementation org.eclipse.paho:org.eclipse.paho.android.service:1.2.5 ```3. **初始化MQ
内容概要:本文介绍了一个基于MATLAB实现的EEMD-TCN混合模型项目,用于中短期天气预测。该方法结合集成经验模态分解(EEMD)与时序卷积网络(TCN),通过EEMD将非平稳气象时间序列分解为多个本征模态函数(IMF)分量,提升信号平稳性与可解释性;再利用TCN对各IMF分量进行独立建模,捕捉长短时依赖关系,最后集成预测结果并重构为最终输出。项目涵盖完整的模型架构,包括数据预处理、EEMD分解、特征提取、TCN建模、多分量集成、超参数优化、评估可视化及实时业务集成模块,并提供了部分代码示例和技术解决方案。该模型有效提升了气象预测的精度、稳定性与智能化水平。; 适合人群:具备一定信号处理与机器学习基础,从事气象预测、时间序列分析或AI应用研究的科研人员及工程技术人员,尤其是熟悉MATLAB环境的研发人员; 使用场景及目标:①应对气象数据非平稳、噪声强、多变量耦合等挑战,提升温度、湿度、风速、降水量等变量的中短期预测精度;②构建高可解释性的智能预测系统,支持防灾减灾、能源调度、农业生产等领域的决策支持;③推动气象业务向自动化、智能化转型; 阅读建议:建议结合文中提供的模型架构与代码示例,动手复现各模块流程,重点关注EEMD参数设置、TCN网络设计及多分量集成策略,同时配合实际气象数据进行调参与验证,以深入掌握该混合模型的核心机制与应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值