常微分方程数值解法 II:深入探究
在常微分方程(ODE)的数值求解领域,有诸多关键方法和概念值得深入探讨。本文将围绕ODE系统的求解方法、单步方法的一致性与收敛性、刚性微分方程以及边值问题等方面展开详细分析。
1. ODE系统的求解方法
对于一阶ODE系统的初值问题(IVP)$\dot{x} = f (t, x)$ 且 $x(t_0) = x_0$,假设该IVP有唯一解。可采用之前提到的显式和隐式欧拉方法、龙格 - 库塔方法,以及显式和隐式多步方法进行数值求解,这些方法同样适用于ODE系统,相关程序也可直接用于系统求解。
1.1 欧拉和龙格 - 库塔方法
- 显式欧拉方法 :对于IVP的精确解 $x(t_k)$,其近似解 $x_k$ 可通过递归公式 $x_{k + 1} = x_k + h f (t_k, x_k)$ ($k = 0, 1, 2 \cdots$)确定,其中 $t_k = t_0 + k h$,$h = \frac{t - t_0}{n}$,$n \in N$。
- 隐式欧拉方法 :递归公式为 $x_{k + 1} = x_k + h f (t_{k + 1}, x_{k + 1})$ ($k = 0, 1, 2 \cdots$)。
- 经典龙格 - 库塔方法 :$x_{k + 1} = x_k + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$,其中 $k_1 = f (t_k, x_k)$,$k_2 = f (t_k + \frac{h}{2},