49、常微分方程数值解法 II:深入探究

常微分方程数值解法 II:深入探究

在常微分方程(ODE)的数值求解领域,有诸多关键方法和概念值得深入探讨。本文将围绕ODE系统的求解方法、单步方法的一致性与收敛性、刚性微分方程以及边值问题等方面展开详细分析。

1. ODE系统的求解方法

对于一阶ODE系统的初值问题(IVP)$\dot{x} = f (t, x)$ 且 $x(t_0) = x_0$,假设该IVP有唯一解。可采用之前提到的显式和隐式欧拉方法、龙格 - 库塔方法,以及显式和隐式多步方法进行数值求解,这些方法同样适用于ODE系统,相关程序也可直接用于系统求解。

1.1 欧拉和龙格 - 库塔方法
  • 显式欧拉方法 :对于IVP的精确解 $x(t_k)$,其近似解 $x_k$ 可通过递归公式 $x_{k + 1} = x_k + h f (t_k, x_k)$ ($k = 0, 1, 2 \cdots$)确定,其中 $t_k = t_0 + k h$,$h = \frac{t - t_0}{n}$,$n \in N$。
  • 隐式欧拉方法 :递归公式为 $x_{k + 1} = x_k + h f (t_{k + 1}, x_{k + 1})$ ($k = 0, 1, 2 \cdots$)。
  • 经典龙格 - 库塔方法 :$x_{k + 1} = x_k + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$,其中 $k_1 = f (t_k, x_k)$,$k_2 = f (t_k + \frac{h}{2},
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值