欧拉计划Problem 32

We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital.

The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital.

Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.

HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.


int main()
{
clock_t ts,te;
ts=clock();
int answer = 0;
int check[9];
int a,b,c,m;
int len1,len2,len3;
int i,j;
char cha[5],chb[5],chc[5];
bool t;
for (i = 9876; i >= 1234; i--)
{
for (j = 2; j*j <= i; j++)
{
memset(check,0,sizeof(check));
t = true;
if (i%j == 0)
{
a=i;b=j;c=i/j;
                sprintf(cha,"%d",a);
                sprintf(chb,"%d",b);
                sprintf(chc,"%d",c);
len1 = strlen(cha);
len2 = strlen(chb);
len3 = strlen(chc);
for(m=0;m<len1;m++)
                    check[cha[m]-'0'-1]=1;
                for(m=0;m<len2;m++)
                    check[chb[m]-'0'-1]=1;
                for(m=0;m<len3;m++)
                    check[chc[m]-'0'-1]=1;
for (m = 0; m < 9;m++)
{
if (check[m] == 0)
{
t = false;
}
}
if (t == true)
{
answer+=i;
break;
}
}
}
}
printf("\nanswer %d",answer);
te=clock();
printf("\ntime difference: %ds\n",(te-ts)/CLOCKS_PER_SEC);
getchar();
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值