光学中的一些口诀
- 光程差很重要
- 明条纹整波长, π \pi π偶倍
- 暗条纹半波长, π \pi π奇倍
- 衍射明暗要对调
- 疏密相间看反射,半波损失相位变
- 透镜不引起附加光程差
- 几何光学作图口诀:一箭穿心过,平行过焦点
光程和光程差
- 对于同一个光波:在真空介质中,光速最大,波长最长.
- 在不同介质中光的波长: λ n = λ n \lambda_n= \frac{\lambda}{n} λn=nλ
- 光程= n r nr nr=折射率*光实际几何路程(真空中n=1)
- 光程差转化为相位差: Δ ϕ = 2 π λ Δ \Delta \phi=\frac{2 \pi}{\lambda}\Delta Δϕ=λ2πΔ
杨氏双缝干涉
-
记住实验的模型图,详见笔记
-
光程差 Δ = n 2 r 2 − n 1 r 1 = d sin θ = d tan θ = d x d ′ \Delta=n_2r_2-n_1r_1= d \sin \theta=d \tan \theta=\frac{dx}{d'} Δ=n2r2−n1r1=dsinθ=dtanθ=d′dx
-
根据光程差来判断干涉实验中的光屏上的明暗条纹和中央条纹
(1) Δ = k λ \Delta=k \lambda Δ=kλ(k=0,1,2,3…)整波长明条纹,相长干涉
(2) Δ = 0 \Delta=0 Δ=0,中央明纹
(3) Δ = ( 2 k + 1 ) λ 2 \Delta=(2k+1)\frac{\lambda}{2} Δ=(2k+1)2λ(k=0,1,2,3…)半波长暗条纹,相消干涉 -
相邻明条纹或暗条纹间距: Δ x = d ′ λ d \Delta x=\frac{d'\lambda}{d} Δx=dd′λ
薄膜干涉
- 记住反射干涉和透射干涉两种模型图,其附加光程差互补
- 光程差计算公式:
(1) Δ = 2 d n 中 2 − n 上 2 sin i + \Delta=2d\sqrt{n_中^2-n_上^2\sin i}+ Δ=2dn中2−n上2sini+附加光程差
(2) Δ = 2 d n 中 + \Delta=2dn_中+ Δ=2dn中+附加光程差
d为中间介质的宽度 - 判断是否具有附加光程差方法:
(1) 上中下介质折射率对称,则有附加光程差
(2) 上中下介质折射率同花顺,则无附加光程差
劈尖
-
记住劈尖的模型图,干涉点在哪,上中下介质是什么
-
光程差公式:
(1) Δ = 2 d n 中 + λ 2 \Delta=2dn_中+\frac{\lambda}{2} Δ=2dn中+2λ
(2) Δ = k λ \Delta=k\lambda Δ=kλ(k=1,2,3…),整波长明条纹
(3) Δ = ( 2 k + 1 ) λ 2 \Delta=(2k+1)\frac{\lambda}{2} Δ=(2k+1)2λ(k=0,1,2,3…),半波长暗条纹
(4) 当d=0时, Δ = λ 2 \Delta=\frac{\lambda}{2} Δ=2λ,即劈尖的尖端处为暗条纹 -
相邻明条纹或暗条纹的劈尖厚度差(注意不是光屏上的距离差)
Δ d = λ 2 n 中 \Delta d=\frac{\lambda}{2n_中} Δd=2n中λ,是一个恒定值 -
相邻明暗条纹的劈尖厚度差
Δ d ′ = λ 4 n 中 \Delta d'=\frac{\lambda}{4n_中} Δd′=4n中λ -
解决劈尖相关问题,注意利用几何关系和角度