大物复习整理(自用)

质点运动学

1.质点运动学方程是指x与t的方程(一定有时间)
2.轨迹方程是x与y相互表示

牛顿运动定律

动量

功和能及功能原理

刚体的定轴转动

角动量守恒

1.若转动时,一个物体所受合力始终指向转动中心或所受力于转轴平行,则在其转动过程中角动量L=r × m v \times mv ×mv= J w Jw Jw保持不变

刚体的旋转

1.各物体的转动惯量J
J = ∫ r 2 d m J=\int r^2dm J=r2dm

  • 细杆通过一端垂直于杆 1 3 m l 2 \frac{1}{3}ml^2 31ml2
  • 细杆通过终点 1 12 m l 2 \frac{1}{12}ml^2 121ml2
  • 圆盘 1 2 m r 2 \frac{1}{2}mr^2 21mr2
  • 球壳 2 3 m r 2 \frac{2}{3}mr^2 32mr2
  • 球体 2 5 m r 2 \frac{2}{5}mr^2 52mr2
    2.已知角加速度或力矩求另一项
    M = J β M=J\beta M=Jβ

刚体定轴转动中的功和能

1.刚体的转动动能 E k = 1 2 J w 2 ( 课 结 合 普 通 动 能 记 忆 ) E_k=\frac{1}{2}Jw^2(课结合普通动能记忆) Ek=21Jw2()

相对论

1.洛伦兹变换
Δ t , = Δ t − Δ x v / c 2 √ 1 − β 2 \Delta t^,=\frac{\Delta t-\Delta xv/c^2}{\surd1-\beta^2} Δt,=1β2ΔtΔxv/c2
Δ x , = Δ x − Δ t v √ 1 − β 2 \Delta x^,=\frac{\Delta x-\Delta tv}{\surd 1-\beta^2} Δx,=1β2ΔxΔtv
2.相对论中的质量,动量,能量

  • m = m 0 √ 1 − β 2 m=\frac{m_0}{\surd 1-\beta^2} m=1β2m0
  • p=mv
  • 静止能量 E 0 = m 0 c 2 E_0=m_0c^2 E0=m0c2
  • 总能量 E = m c 2 E=mc^2 E=mc2
  • 动能 E k = E − E 0 E_k=E-E_0 Ek=EE0
  • 能量与动量的关系 E 2 = E 0 2 + p 2 c 2 E^2=E_0^2+p^2c^2 E2=E02+p2c2

真空中的静电场( ϵ 0 = 8.85 ∗ 1 0 − 12 \epsilon_0=8.85*10^{-12} ϵ0=8.851012)

场强与场强的叠加

1.点电荷的场强
E= 1 4 π ϵ 0 q r 2 \frac{1}{4\pi\epsilon_0}\frac{q}{r^2} 4πϵ01r2q
2.均匀带电球壳
球外:E= 1 4 π ϵ 0 q r 2 \frac{1}{4\pi\epsilon_0}\frac{q}{r^2} 4πϵ01r2q
球内:0
3.均匀带电球体
球内:E= 1 4 π ϵ 0 q r R 3 \frac{1}{4\pi \epsilon_0}\frac{qr}{R^3} 4πϵ01R3qr
球外:E= 1 4 π ϵ 0 q r 2 \frac{1}{4\pi\epsilon_0}\frac{q}{r^2} 4πϵ01r2q
4.电荷密度为 λ \lambda λ的无限长均匀带电直线
E= 1 2 π ϵ 0 λ r \frac{1}{2\pi \epsilon_0}\frac{\lambda}{r} 2πϵ01rλ
5.面密度为 σ \sigma σ的无限大均匀带电平面
E= σ 2 ϵ 0 \frac{\sigma}{2\epsilon_0} 2ϵ0σ σ 可 正 可 负 \sigma可正可负 σ
电荷强度E的单位:N/C

积分求场强

1.先求dE,再把dE从0-L进行积分
eg1:
在这里插入图片描述
一个经典例题:需要注意的点有
1. x ( 1 − x ) 2 \frac{x}{(1-x)^2} (1x)2x的积分,将分子配凑
2.求 1 x \frac{1}{x} x1的原函数是ln|x|(不要掉绝对值
eg2:
在这里插入图片描述
注意的点:1. λ = σ ∗ d \lambda=\sigma*d λ=σd
2.先分别求 d E x , d E y dE_x,dE_y dEx,dEy,再分别积分,最后合并

场强的注意点

1.描述静电场性质的两个基本物理量是电场强度电势
2.定义式分别为
E ⃗ = F ⃗ q \vec{E}=\frac{\vec{F}}{q} E =qF
U A 点 = ∫ A 点 电 势 0 点 E ⃗ d l ⃗ U_{A点}=\int_{A点}^{电势0点}\vec{E}d\vec{l} UA=A0E dl

电通量,高斯定理

1.电通量 ϕ e \phi_e ϕe的定义:通过某曲面S的电场线数目(若计算封闭面,E穿出为正,穿入(穿入的意思是进入物体内部)为负
ϕ e = E S \phi_e=ES ϕe=ES
2.求通过立方体的电通量一般是构筑外接球面或圆柱面
3.用高斯定理求场强
ϕ e = 1 ϵ 0 ∑ q 内 \phi_e=\frac{1}{\epsilon_0}\sum{q内} ϕe=ϵ01q此公式可以推出各模型的场强公式
需要注意 ϕ e \phi_e ϕe是由全部电荷共同产生的,并不是只由封闭曲面里面的电荷决定的

电介质中的高斯定理

1.电解质中的高斯定理求场强如果求的不是真空场强,含有介质且介电常数为 ϵ r \epsilon_r ϵr,高斯定理式子左边变成 ϵ r ϕ e \epsilon_r\phi_e ϵrϕe其实就是真空中的结果除 ϵ r \epsilon_r ϵr
2.求极化电荷/束缚电荷
E就是上面求出来的, E 极 化 E_{极化} E就是原来的无介质E把q或 σ \sigma σ换成 q 极 化 q_{极化} q σ 极 化 \sigma_{极化} σ
E= E 无 介 质 + E 极 化 E_{无介质}+E_{极化} E+E
3.电介质中高斯定理的注意点

  • 静电场中的高斯定理有两种形式: ∫ D d s = ∑ q \int D ds=\sum q Dds=q(有电介质时的高斯定理),其中D是电位移,q是高斯面s内的自由电荷 ∫ E d s = 1 ϵ 0 q \int E ds=\frac{1}{\epsilon_0}q Eds=ϵ01q,其中q是高斯面内的所有电荷,在电介质中,q包括自由电荷和极化电荷两部分
  • 电位移D与自由电荷和极化电荷的分布有关
  • 电介质充满整个电场自由电荷的分布不发生变化时,电介质中场强等于没有电介质时的 1 ϵ r \frac{1}{\epsilon_r} ϵr1
    eg:若Dds=0,则曲面内电荷的代数和为0,是错的,应为自由电荷的代数和

4.静电场的能量/静电能
静电能W= ∫ 1 2 ϵ 0 ϵ r E 2 d V \int \frac{1}{2}\epsilon_0\epsilon_rE^2dV 21ϵ0ϵrE2dV
dV可以是 4 π r 2 d r 4\pi r^2dr 4πr2dr,V是所求静电能的空间,一般积分到正无穷。

电势/电势能

1.根据场强求电势
U= ∫ 待 求 点 的 r 值 电 势 0 点 的 r 值 E d r \int_{待求点的r值}^{电势0点的r值}Edr r0rEdr
2.求电势差或电压

  • 求场强
  • A,B两点的电势差= U A − U B = ∫ A 点 的 r 值 B 点 的 r 值 E d r U_A-U_B=\int_{A点的r值}^{B点的r值}Edr UAUB=ArBrEdr

3.取电荷元求电势

  • 求dq
  • du= 1 4 π ϵ 0 d q r \frac{1}{4\pi\epsilon_0}\frac{dq}{r } 4πϵ01rdq
  • 积分
    4.电势/电势差的注意点
  • 电势会随着电场线的方向变小
  • 一点的电势取决于电势0点
  • 场强是电势的微分
  • E x = − ∂ U ∂ x E_x=-\frac{\partial U}{\partial x} Ex=xU …(其他一样的)

5.求电势能

  • 带求件上某个点,求出其电量dq
  • 求出点处
  • W= ∫ U d q \int Udq Udq(U是各点的电势)

6.电场力对位移的电荷做功
A 12 = q ( U 1 − U 2 ) A_{12}=q(U_1-U_2) A12=q(U1U2)电势能转化为其他形式的能量

静电平衡

1.静电平衡的导体
(1)若两个导体(可以有一个不带电)放在一起

  • 导体中的带你和会跑到表面
  • 导体除了表面以外的部分 ∑ q \sum q q=0
  • 导体除表面以外的部分E处处为0
  • 导体各处电势相等

(2)若还是有两个导体,一个导体一定带电,另一个可能不带电,接地,接地导体靠近带电体一端和没接地一样,远离另一带电体一侧变为电中性(电中性可以有两种思考方式)
(3)表面曲率越大的地方电荷密度越大
2.有静电平衡的导体求场强(高斯定理
ϕ e = 1 ϵ 0 ∑ q \phi_e=\frac{1}{\epsilon_0}\sum q ϕe=ϵ01q
3.有静电平衡的导体,求电势
U = ∫ r + ∞ E d r U=\int_r^{+\infty}Edr U=r+Edr(求哪个地方电势r就是哪个)
E是上面用高斯定理求的

电容

1.平行板电容器

  • S为相对距离,即重合部分
  • 一块板的带电量为Q(意思是一块+Q,一块-Q)
  • 两板间场强为E,电压为U,相互作用力为F
  • C= Q U = ϵ 0 ϵ r S d \frac{Q}{U}=\frac{\epsilon_0\epsilon_rS}{d} UQ=dϵ0ϵrS
  • Q=CU
  • E= σ ϵ 0 ϵ r = U d = 2 F Q \frac{\sigma}{\epsilon_0\epsilon_r}=\frac{U}{d}= \frac{2F}{Q} ϵ0ϵrσ=dU=Q2F
  • U= Q C \frac{Q}{C} CQ=Ed
  • F= QE/2
  • 1F= 1 × 1 0 6 u F = 1 × 1 0 12 p F 1\times10^6uF=1\times10^{12}pF 1×106uF=1×1012pF

2.平行板电容器中有部分介质(类似于两板之间完全插入某物)求电容
C = ϵ 0 S d 1 ϵ r 1 + d 2 ϵ r 2 . . . + d n ϵ r n C=\frac{\epsilon_0S}{\frac{d_1}{\epsilon_{r1}}+\frac{d_2}{\epsilon_{r2}}...+\frac{d_n}{\epsilon_{rn}}} C=ϵr1d1+ϵr2d2...+ϵrndnϵ0S
(若有金属板,金属板的 ϵ r 为 正 无 穷 大 \epsilon_r为正无穷大 ϵr) (意思是有金属板的话看成d减小就行了

3.圆柱形电容器(里面一个圆筒,外面一个圆筒),球形电容器(里面一个小球)
C = Q U C=\frac{Q}{U} C=UQ
C = 2 π ϵ 0 l l n R 2 R 1 C=\frac{2\pi \epsilon_0 l }{ln\frac{R_2}{R_1}} C=lnR1R22πϵ0l
球形电容器
C = 4 π ϵ 0 ϵ r R 1 R 2 R 2 − R 1 C=\frac{4\pi\epsilon_0\epsilon_rR_1R_2}{R_2-R_1} C=R2R14πϵ0ϵrR1R2

4.电容器内部分区域有介质,且介质面与电容器面垂直,求总电容
分几个部分求,然后视作并联,直接相加求和

5.求电容器的电场能
W= Q 2 2 C = 1 2 Q U = 1 2 C U 2 \frac{Q^2}{2C}=\frac{1}{2}QU=\frac{1}{2}CU^2 2CQ2=21QU=21CU2

6.电容器两板间的位移电流(方向与两板间的E,U的方向相反)

  • 位移电流即变化的电场形成的等效电流,有平行板两极电荷的增减形成了位移电流
  • I d = ϵ 0 ϵ r d E d t S = C d U d t I_d=\epsilon_0\epsilon_r\frac{dE}{dt}S=C\frac{dU}{dt} Id=ϵ0ϵrdtdES=CdtdU

磁场( μ 0 = 4 π × 1 0 − 7 \mu_0=4\pi\times10^{-7} μ0=4π×107

1.求磁感应强度
安培环路定理: ∫ B ⋅ d l = μ 0 ∑ L 内 I 0 \int B\cdot dl=\mu_0\sum_{L内}I_0 Bdl=μ0LI0
磁感应强度方向为右手定则

  • 无限长直导线:B= μ 0 I 2 π r \frac{\mu_0I}{2\pi r} 2πrμ0I
  • 半径为R的无限长圆筒:B= μ 0 I 2 π r \frac{\mu_0I}{2\pi r} 2πrμ0I(圆筒外)(圆柱内是0)
  • 半径为R的无限长圆柱:B= μ 0 I 2 π r \frac{\mu_0I}{2\pi r} 2πrμ0I(圆柱外)
    B = μ 0 I r 2 π R 2 B=\frac{\mu_0Ir}{2\pi R^2} B=2πR2μ0Ir(圆柱内)
  • 半径为R的N匝圆形线圈 B = N μ 0 2 R 2 I ( R 2 + x 2 ) 3 / 2 B=N\frac{\mu_0}{2}\frac{R^2I}{(R^2+x ^2)^{3/2}} B=N2μ0(R2+x2)3/2R2I
  • 普通线圈: B = μ 0 I 2 R B=\frac{\mu_0I}{2R} B=2Rμ0I
  • 单位长度上为n匝的直螺线管和环形螺线管
    B= μ 0 n I \mu_0nI μ0nI(管内)(nI是单位长度的电流
    B=0(管外)

2.求通电导线段/射线的磁感应强度

  • 若待求点在导线或其延长线上,不用算
  • r为待求点到导线的距离,待求点与电流起点连线,连线与导线的夹角为 θ 1 \theta_1 θ1,待求点与终点连线,从导线延长线方向到连线的夹角为 θ 2 \theta_2 θ2,(可能为钝角)
    B = μ 0 I 4 π r ( c o s θ 1 − c o s θ 2 ) B=\frac{\mu_0I}{4\pi r}(cos\theta_1-cos\theta_2) B=4πrμ0I(cosθ1cosθ2)

3.求长为dl的通电短导线的磁感应强度
B = μ 0 I 4 π r d l s i n θ r B=\frac{\mu_0I}{4\pi r}\frac{dlsin\theta}{r} B=4πrμ0Irdlsinθ(毕奥萨法尔定律)( θ 为 I 方 向 与 r 方 向 的 夹 角 \theta为I方向与r方向的夹角 θIr
4.利用积分求磁感应强度

  • 先求dB,再将dB积分,dI用dx表示
    5.利用安培环路定理求磁感应强度
  • 要给闭合曲线假定方向
  • ∫ B d l \int Bdl Bdl时( l l l与b平行且同向的部分- l l l与B平行反且向的部分,其他部分忽略)

磁场里的力

1.判断运动电荷在磁场中受的力
大小: F = B v q s i n θ F=Bvqsin\theta F=Bvqsinθ θ 是 B 与 v 的 夹 角 \theta是B与v的夹角 θBv
方向:正电荷:左手定则,四指指向正电荷运动方向
tips:磁铁的磁感线方向是n到s级
阴极射线:从负极到正极的负电荷
2.带电粒子在磁场作用下运动

  • 一粒子进入磁场,若速度与磁场平行,则匀速运动,若速度与B垂直,作匀速圆周运动
    r = m v B q r=\frac{mv}{Bq} r=Bqmv
    T = 2 π m B q T=\frac{2\pi m}{Bq} T=Bq2πm

3.通电导线在磁场中受的力
大小: F = B I L s i n θ F=BILsin\theta F=BILsinθ(L为电流起点到电流终点的直线距离, θ \theta θ为电流起点到终点的方向与B的夹角)
方向:左手定则
4.载流线圈的磁矩 m ⃗ \vec m m ,收到的力矩 M ⃗ \vec M M

  • m ⃗ : \vec m: m :
    大小: m = N I S m=NIS m=NIS
    方向:右手四指按电流的方向弯曲时,拇指所指的方向(右手定则)
  • M ⃗ : \vec M: M :
    大小: M = m B s i n θ M=mBsin\theta M=mBsinθ( θ \theta θ m ⃗ \vec m m B ⃗ \vec B B 的夹角)
    方向:可使 m ⃗ \vec m m 的方向接近 B ⃗ \vec B B 的方向的转向
    5.霍尔效应
    霍尔电压大小: U = A H I B d U=A_H\frac{IB}{d} U=AHdIB(d指的是导体中与B平行的方向的边长)

电磁感应

1.求通过某个面的磁通量( Φ = ∫ B ⃗ d s ⃗ \Phi=\int \vec Bd\vec s Φ=B ds

  • 平面法向量与B的夹角为 θ \theta θ Φ = B S c o s θ \Phi=BScos\theta Φ=BScosθ
  • 封闭面 B = 0 B=0 B=0
    (若面为封闭面(的一部分也可以),则B传出为正,穿入为负)

2.由磁通量变化产生的感应电动势

  • 通过N匝闭合线圈的磁通量 Φ \Phi Φ发生变化时,
    电动势大小: ϵ = − N d Φ d t \epsilon=-N\frac{d\Phi}{dt} ϵ=NdtdΦ
    方向:楞次定律

3.由切割磁感线产生的感应电动势

  • 电动势大小:
    ϵ = B L v ( 垂 直 ) \epsilon=BLv(垂直) ϵ=BLv()
    L为导线在垂直于B的面的投影长
    v垂直为v垂直于B和L的面的分速度
  • 电动势方向:电动势方向是从负极指向正极,用右手定则,拇指为运动方向,四指指尖指向正极,另一边为负极
  • 感应电流方向:从负极到正极

4.利用积分计算切割产生的感应电动势
E = ∫ B v d x E=\int Bvdx E=Bvdx
5.自感和互感
自感系数 L = ϕ / I L=\phi/I L=ϕ/I (有时候是磁链 ϕ = n Φ \phi=n\Phi ϕ=nΦ)
螺线管自感L= μ n 2 V \mu n^2V μn2V(n为单位螺线管上的长度)
单位(亨利:H)
ϵ = − d Φ d t \epsilon=-\frac{d\Phi}{dt} ϵ=dtdΦ= − L d I d t -L\frac{dI}{dt} LdtdI
互感系数M= ϕ 21 I 1 = ϕ 12 I 2 \frac{\phi_{21}}{I_1}=\frac{\phi_{12}}{I_2} I1ϕ21=I2ϕ12
6.磁场能量
W m = 1 2 L I 2 W_m=\frac{1}{2}LI^2 Wm=21LI2

  • 16
    点赞
  • 88
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值