欢迎进入新手之家

														 	——王的欲望

很高兴加入CSDN这个大家庭,如标题一般,我是一个刚入门的小菜鸟;学习是枯燥的,和大神们沟通交流是愉快的,希望大家可以多多关照。

标记:由于PHP 是嵌入式脚本语言,它在实际开发中经常会与HTML内容混编在一起,所以为了区分HTML与PHP代码,需要使用标记对PHP代码进行标识。

如下:

在这里插入图片描述

要写代码肯定离不开注释的

在这里插入图片描述
效果如下:
在这里插入图片描述
因为是刚刚起步,没什么高深的知识,所以就在这里科普一下代码的重要性吧:
注释的重要性:

如果我们是做独立项目,那么我们可以按照自己的想法来写代码。但是如果是和别人合作的话,代码没有注释的话,很难让别人去理解和明白代码的含义,往往在一个项目里不只是简单地那么几行代码,而是大量的代码,如果一行一行的阅读翻译的话耽误的时间可能是成倍增加,但是有了注释会大大的减轻负担

学会注释的好处:

(1)有助于保持一致性

(2)有助于理解

(3)帮助修补程序或快速修复

(4)有助于加快开发过程

(5)有助于提高协作效率

注意:

在代码的注释过程中注意不要写太长,增加代码的冗余(rong 三声;yu 二声指的是信息)度,不用花大量时间去写一些不重要的注释。

(以上有自己的见解 也有网上摘抄的信息)

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值