题目:
四平方和
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
思路:用数组sum[i]存i的平方(5000000的1/2次方为2236,所以数组只需开2237即可),先找到比输入数据x大的前一个位置xi, 遍历f(xi)到f(1)(f函数从xi开始向前贪心获取比当前x小的数的1/2次方,得到一组合法的an),将an转化为对应字符串放入set中自动升序排序,最后输入set中的第一个元素。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 2237;
ll sum[N+1];
ll an[4]={0,0,0,0};
int getpos(ll x)
{
for(int i=0;i<=N;++i) {
if(sum[i]>=x) return i-1;
}
return -1;
}
string a2s()
{
ostringstream ostr;
for(int i=0;i<4;++i) ostr << an[i] << " ";
return ostr.str();
}
bool f(ll x,int xi)
{
memset(an,0,sizeof(int)*4);
int i=3;
while(i>=0&&x>0) {
for(int j=xi;j>0;--j) {
if(x==sum[j]) {
an[i] = j;
x=0;
--i;
break;
} else if(x>sum[j]) {
while(x>=sum[j]&&i>=0&&x>0) {
an[i]=j;
x-= sum[j];
--i;
}
}
}
}
if(x>0) return false;
return true;
}
set<string> sset;
int main()
{
for(int i=0;i<=N;++i) sum[i] = i*i;
ll x;
cin >> x;
int xi = getpos(x);
while(xi>0) {
if(f(x,xi)) sset.insert(a2s());
--xi;
}
set<string>::iterator it = sset.begin();
string res = *it;
cout << *it << endl;
return 0;
}