题目
标题:高僧斗法
古时丧葬活动中经常请高僧做法事。仪式结束后,有时会有“高僧斗法”的趣味节目,以舒缓压抑的气氛。
节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠)。又有若干小和尚随机地“站”在某个台阶上。最高一级台阶必须站人,其它任意。(如图所示
)
两位参加游戏的法师分别指挥某个小和尚向上走任意多级的台阶,但会被站在高级台阶上的小和尚阻挡,不能越过。两个小和尚也不能站在同一台阶,也不能向低级台阶移动。 两法师轮流发出指令,最后所有小和尚必然会都挤在高段台阶,再也不能向上移动。轮到哪个法师指挥时无法继续移动,则游戏结束,该法师认输。
对于已知的台阶数和小和尚的分布位置,请你计算先发指令的法师该如何决策才能保证胜出。
输入数据为一行用空格分开的N个整数,表示小和尚的位置。台阶序号从1算起,所以最后一个小和尚的位置即是台阶的总数。(N<100, 台阶总数<1000)
输出为一行用空格分开的两个整数: A B, 表示把A位置的小和尚移动到B位置。若有多个解,输出A值较小的解,若无解则输出-1。
例如:
用户输入:
1 5 9
则程序输出:
1 4
再如:
用户输入:
1 5 8 10
则程序输出:
1 3
可将其转化为尼姆堆问题,可以参考博客https://blog.csdn.net/mymilkbottles/article/details/51362703中的介绍
代码
仅供参考
#include <bits/stdc++.h>
using namespace std;
int an[101]; // 存放和尚的位置
int *step; // 台阶
int np, nstep;
int heap[1001]; // 尼姆堆,两个为一堆
int tmp[1001];
int str2int(string str)
{
int res;
istringstream istr(str);
istr >> res;
return res;
}
void init()
{
string line,elem;
getline(cin,line);
istringstream istr(line);
int i=1;
while(istr >> elem) {
an[i] = str2int(elem);
++i;
}
an[i] = an[i-1]+1; // 最后放一个step+1,因为最后一个和尚不能移动,凑成异或值为0
np = i-1; // 和尚数量
nstep = an[np]; // 台阶数量
step = new int[nstep+2];
memset(step,0,sizeof(int)*(nstep+2));
for(int j=1; j<=np; ++j) step[an[j]] = 1;
}
bool judge()
{
int j=1;
for(int i=1; i<=nstep; ++i) {
if(tmp[i]==1) {
an[j] = i;
j += 1;
}
}
an[j] = an[j-1] + 1;
int res(0);
for(int i=2; i<=j; i+=2) {
heap[i] = an[i]-an[i-1]-1;
res ^= heap[i];
}
return res==0;
}
void doit()
{
int res(0);
// 两个为一堆
for(int i=2; i<=np; i+=2) {
heap[i] = an[i]-an[i-1]-1;
res ^= heap[i];
}
if(!res) {
cout << "-1" << endl;
return ;
} else {
for(int i=1; i<=nstep; ++i) {
if(!step[i]) continue;
memcpy(tmp,step,sizeof(int)*(nstep+2));
for(int j=i+1; j<=nstep; ++j) {
tmp[i] = 0;
tmp[j] = 1;
if(judge()) {
printf("%d %d\n",i,j);
return ;
}
tmp[i] = 1;
tmp[j] = 0;
}
}
}
}
int main()
{
init();
doit();
return 0;
}