引入
指数形式的曲线也是工程实践中经常遇到的。比如指数衰减。
处理流程
- 获取实验数据x, y
- 利用scipy.optimize.curve_fit()进行指数函数拟合。
curve_fit本质是提供一个目标函数和初值,通过优化算法去搜索出最佳的拟合参数。可以提供一个初值,使得拟合更快更准。 - 得到拟合出的系数,进行后续的数据处理。
实例
已知一组类似指数衰减数据,形如: y = a 0 e x / a 1 + a 2 y = a_0e^{x/a_1}+a_2 y=a0ex/a1+a2,需拟合出系数。
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as optimize
pi = np.pi
# 模拟生成一组实验数据
x = np.arange(0, 100, 0.2)
y = np.exp(-x / 51.3)
noise = np.random.uniform(0, 0.1, len(x))
y += noise
fig, ax = plt.subplots()
ax.plot(x, y, 'b--')
# 拟合指数曲线
def target_func(x, a0, a1, a2):
return a0 * np.exp(-x / a1) + a2
a0 = max(y) - min(y)
a1 = x[round(len(x) / 2)]
a2 = min(y)
p0 = [a0, a1, a2]
print(p0)
para, cov = optimize.curve_fit(target_func, x, y, p0=p0)
print(para)
y_fit = [target_func(a, *para) for a in x]
ax.plot(x, y_fit, 'g')
plt.show()