首先明确:卷积神经网络的训练是为了得到卷积核,方便之后进行其他操作
一. 卷积神经网络的特点
1、局部感知:
一般认为图像的空间联系是局部的像素联系比较密切,而距离较远的像素相关性较弱,因此,每个神经元没必要对全局图像进行感知,只要对局部进行感知,然后在更高层将局部的信息综合起来得到全局信息。
2、参数共享:
在局部连接中,每个神经元的参数都是一样的,即:同一个卷积核在图像中都是共享的。(理解:卷积操作实际是在提取一个个局部信息,而局部信息的一些统计特性和其他部分是一样的,也就意味着这部分学到的特征也可以用到另一部分上。所以对图像上的所有位置,都能使用同样的学习特征。)卷积核共享有个问题:提取特征不充分,可以通过增加多个卷积核来弥补,可以学习多种特征。
3、采样(池化)层:
在通过卷积得到特征后,基于局部相关性原理进行亚采样,在减少数据量的同时保留有用信息。(压缩数据和参数的量,减少过拟合)(max-polling 和average-polling)
二. 多核卷积
通过权值共享可以了解到:用一个卷积核操作只能得到一部分的特征,但是得不到全部特征,这时候就必须引入多卷积核来尽可能多的获取图像矩阵的全部特征,即每个卷积核学习不同特征(卷积核不同的值)来提取原图特征。<