利用卷积处理图片的实例(图像模糊,锐化...)

本文介绍了卷积神经网络(CNN)的特点,包括局部感知、参数共享和采样层。阐述了多核卷积如何提取图像的多种特征,并通过实例展示了卷积在图像模糊和锐化中的应用。此外,还讨论了在处理不同格式图像时遇到的问题,如.jpg与.png的区别。
摘要由CSDN通过智能技术生成

首先明确:卷积神经网络的训练是为了得到卷积核,方便之后进行其他操作

一. 卷积神经网络的特点

1、局部感知:

一般认为图像的空间联系是局部的像素联系比较密切,而距离较远的像素相关性较弱,因此,每个神经元没必要对全局图像进行感知,只要对局部进行感知,然后在更高层将局部的信息综合起来得到全局信息。

2、参数共享:

在局部连接中,每个神经元的参数都是一样的,即:同一个卷积核在图像中都是共享的。(理解:卷积操作实际是在提取一个个局部信息,而局部信息的一些统计特性和其他部分是一样的,也就意味着这部分学到的特征也可以用到另一部分上。所以对图像上的所有位置,都能使用同样的学习特征。)卷积核共享有个问题:提取特征不充分,可以通过增加多个卷积核来弥补,可以学习多种特征。

3、采样(池化)层:

在通过卷积得到特征后,基于局部相关性原理进行亚采样,在减少数据量的同时保留有用信息。(压缩数据和参数的量,减少过拟合)(max-polling 和average-polling)

二. 多核卷积

通过权值共享可以了解到:用一个卷积核操作只能得到一部分的特征,但是得不到全部特征,这时候就必须引入多卷积核来尽可能多的获取图像矩阵的全部特征,即每个卷积核学习不同特征(卷积核不同的值)来提取原图特征。<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值