spfa-带有负环的单元最短路

本文介绍了SPFA算法在处理带有负权边的最短路径问题中的应用,特别是在存在负权环的图中。通过队列优化的Bellman-Ford算法,SPFA可以更高效地求解单源最短路径。文章提供了具体的实例,解释了如何利用SPFA判断负权环并找出最短路径,并给出了完整的代码实现。同时,还强调了SPFA算法与DFS、BFS的结合使用及其重要性。
摘要由CSDN通过智能技术生成

问题描述:

这一晚,TT 做了个美梦!

在梦中,TT 的愿望成真了,他成为了喵星的统领!喵星上有 N 个商业城市,编号 1 ~ N,其中 1 号城市是 TT 所在的城市,即首都。

喵星上共有 M 条有向道路供商业城市相互往来。但是随着喵星商业的日渐繁荣,有些道路变得非常拥挤。正在 TT 为之苦恼之时,他的魔法小猫咪提出了一个解决方案!TT 欣然接受并针对该方案颁布了一项新的政策。

具体政策如下:对每一个商业城市标记一个正整数,表示其繁荣程度,当每一只喵沿道路从一个商业城市走到另一个商业城市时,TT 都会收取它们(目的地繁荣程度 - 出发地繁荣程度)^ 3 的税。

TT 打算测试一下这项政策是否合理,因此他想知道从首都出发,走到其他城市至少要交多少的税,如果总金额小于 3 或者无法到达请悄咪咪地打出 ‘?’。

Input:

第一行输入 T,表明共有 T 组数据。(1 <= T <= 50)

对于每一组数据,第一行输入 N,表示点的个数。(1 <= N <= 200)

第二行输入 N 个整数,表示 1 ~ N 点的权值 a[i]。(0 <= a[i] <= 20)

第三行输入 M,表示有向道路的条数。(0 <= M <= 100000)

接下来 M 行,每行有两个整数 A B,表示存在一条 A 到 B 的有向道路。

接下来给出一个整数 Q,表示询问个数。(0 <= Q <= 100000)

每一次询问给出一个 P,表示求 1 号点到 P 号点的最少税费。

Output:

每个询问输出一行,如果不可达或税费小于 3 则输出 ‘?’。

Sample Input:

2
5
6 7 8 9 10
6
1 2
2 3
3 4
1 5
5 4
4 5
2
4
5
10
1 2 4 4 5 6 7 8 9 10
10
1 2
2 3
3 1
1 4
4 5
5 6
6 7
7 8
8 9
9 10
2
3 10

Sample Output:

Case 1:
3
4
Case 2:
?
?

题解:

一、SPFA算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法。
很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。
实现方法:建立一个队列,初始时队列里只有起始点,在建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。此外,SPFA算法还可以判断图中是否有负权环,即一个点入队次数超过N。
二、对于本题,我们可以很明确的知道将城市看成图,那么会出现负边的现象,因此dijkstra算法等就不能使用,应该使用spfa算法进行。如果存在负环,负环上的点以及能与其联通的点,他们的最短路是不存在的,我们就可以通过dfs寻找联通点,将所有与负环存在通路的点全部找到,其余点通过spfa算法进行松弛,找到最短路。之后将符合条件的值及逆行输出即可。

完整代码:

#include <iostream>
#include<stdio.h>
#include<stdlib.h>
#include <algorithm> 
#include <cstring>
#include <cmath>
#include <map>
#include<queue>
using namespace std;
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
const int M=100001;
const int N=201;
int inf=1e8;
int t,n,m;
struct edge{
   
	int to,next;            //next:以i为起点的上一条边的储存位置。 
SPFA算法(Shortest Path Faster Algorithm)是一种用于解决最短路问题的算法。它是一种单源最短路径算法,可以解决带有负权边的图的最短路径问题。 SPFA算法基本思想是使用队列对图中的所有节点进行遍历,对于每一个节点,如果它的邻居节点的最短路径可以通过当前节点更新,则将邻居节点加入队列中进行下一轮遍历,直到所有节点的最短路径都被更新后停止遍历。 在Java中,可以使用邻接矩阵或邻接表来表示图,并使用队列来实现SPFA算法。下面是一个使用邻接矩阵实现SPFA算法的Java代码示例: ```java import java.util.*; public class SPFA { public static void main(String[] args) { int[][] graph = { {0, 2, 5, Integer.MAX_VALUE, Integer.MAX_VALUE}, {Integer.MAX_VALUE, 0, 7, 1, Integer.MAX_VALUE}, {Integer.MAX_VALUE, Integer.MAX_VALUE, 0, 4, Integer.MAX_VALUE}, {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 0, 3}, {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 0} }; int[] dist = shortestPath(graph, 0); System.out.println(Arrays.toString(dist)); } public static int[] shortestPath(int[][] graph, int start) { int n = graph.length; int[] dist = new int[n]; Arrays.fill(dist, Integer.MAX_VALUE); dist[start] = 0; Queue<Integer> queue = new LinkedList<>(); queue.offer(start); boolean[] inQueue = new boolean[n]; inQueue[start] = true; while (!queue.isEmpty()) { int u = queue.poll(); inQueue[u] = false; for (int v = 0; v < n; v++) { if (graph[u][v] != Integer.MAX_VALUE && dist[v] > dist[u] + graph[u][v]) { dist[v] = dist[u] + graph[u][v]; if (!inQueue[v]) { queue.offer(v); inQueue[v] = true; } } } } return dist; } } ``` 在上面的代码中,我们使用一个二维数组`graph`来表示图,其中`graph[i][j]`表示从节点`i`到节点`j`的边的权重,如果没有边则为`Integer.MAX_VALUE`。函数`shortestPath`接受一个图和一个起点`start`,返回一个数组`dist`,其中`dist[i]`表示从起点`start`到节点`i`的最短路径。 在函数中,我们首先初始化`dist`数组为`Integer.MAX_VALUE`,表示所有节点到起点的距离都是无限大。然后将起点`start`加入队列中,并标记为已加入队列。进入循环后,每次取出队列中的一个节点`u`,将`u`标记为未加入队列,然后遍历`u`的所有邻居节点`v`,如果从起点到`v`的距离可以通过从起点到`u`再加上`u`到`v`的距离来更新,则更新`dist[v]`的值,并将`v`加入队列中,并标记为已加入队列。当队列为空时,所有节点的最短路径都已被更新,函数返回`dist`数组。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值