方法一:
对于超大的整型来说 int . long . long long. 都在存储范围上边无能为力 ,此时我们可以想到浮点数据类型 float. double
但是当我们 我们要计算一下1000!中含有多少个数字2的时候
首先我们当是100!时候
#include<stdio.h>
#define N 100
int main()
{
double sum=1.0;int count=0;
for(int i=1;i<=N;i++)
{
sum*=i;;
}
while(sum/sum-1)//在这里我因为真正当sum/2用来计算所耗时间过长,所以这里我将2用sun-1替换了
{
count++;
}
printf("%lf\n含有%d个\n",sum,count);
return 0;
}
这个结果如下,但是不是精确的,这是已经舍弃之后的数
下来当是200!时候
#include<stdio.h>
#define N 1000
int main()
{
double sum=1.0;int count=0;
for(int i=1;i<=N;i++)
{
sum*=i;;
}
while(sum/sum-1)//在这里我因为真正当sum/2用来计算所耗时间过长,所以这里我将2用sun-1替换了
{
count++;
}
printf("%lf\n含有%d个\n",sum,count);
return 0;
}
很明显超出了范围,所以用浮点数只能表示一定范围的数,至少100!表示不了,那怎么存储1000!呢?
哈哈! 我们也可以用数组存储呀!
这里关键要考虑到进位存储在搞标号的数组单元中
/**********************************************************************
* Copyright (c)2015,WK Studios
* Filename:
* Compiler: GCC,VS,VC6.0 win32
* Author:WK
* Time: 2015 4 18
************************************************************************/
#include<stdio.h>
#define Ma 10000 //a的最大容量,必须大于na
int pa=0;//指向数组a的有效末端
int p=2;//求阶乘时的当前乘数
unsigned int carry=0;
int memory_over=0;
union data
{ //表示范围0--2^32-1
unsigned long int b;//这里也可以用数组usigned long int ,但是用公用体可以存储不同类型的数据
}a[Ma];
void main()
{
unsigned int n;//求n的阶
void facto(unsigned int n);
printf("Input n:");
scanf("%u",&n);
a[0].b=1;//初始化
facto(n);//测试后至少可以计算10000!
if(memory_over==0)
{
printf("the result include %dNO:\n",pa+1);//高位输出
printf("%u",a[pa--].b);
for(;pa>=0;pa--)
{
printf("%04u",a[pa].b);//04%d用来补充0限制每个int型中存放4位数
}
printf("\n");
}
getchar();
}
void facto(unsigned int n)
{
void multiple();
pa=0;
while(pa< Ma-1 && p<=n)//容量限制
{
multiple();
p++;//每一轮乘一个阶数p
}
if(p<=n)//此时pa>=Ma-1退出while循环说明超出数组所能存储的范围
{
printf("memory out!\n");
memory_over=1;
}//如果当前的存储结果的数组a[Ma]不够用!应提高Ma
}
void multiple()
{
int i=0;
carry=0;
while(i<=pa)//i指向当前处理的元素a[i],每一轮用一个位与阶数p相乘
{
a[i].b=a[i].b*p+carry;//计算结果,要考虑来自低位的进位
carry=a[i].b/10000;//计算进位
a[i].b=a[i].b%10000;//计算余数
i++;
}
//储代码块后carry=0
if(carry>0)
a[++pa].b=carry;
}