(DFS/并查集)Codeforces Round #479 (Div. 3) E. Cyclic Components

3 篇文章 0 订阅
2 篇文章 0 订阅
E. Cyclic Components
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.

Here are some definitions of graph theory.

An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.

A connected component is a cycle if and only if its vertices can be reordered in such a way that:

  • the first vertex is connected with the second vertex by an edge, 
  • the second vertex is connected with the third vertex by an edge, 
  • ... 
  • the last vertex is connected with the first vertex by an edge, 
  • all the described edges of a cycle are distinct. 

A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.

There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
Input

The first line contains two integer numbers nn and mm (1n21051≤n≤2⋅1050m21050≤m≤2⋅105) — number of vertices and edges.

The following mm lines contains edges: edge ii is given as a pair of vertices viviuiui (1vi,uin1≤vi,ui≤nuiviui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.

Output

Print one integer — the number of connected components which are also cycles.

Examples
input
Copy
5 4
1 2
3 4
5 4
3 5
output
Copy
1
input
Copy
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
output
Copy
2
Note

In the first example only component [3,4,5][3,4,5] is also a cycle.

The illustration above corresponds to the second example.

题解:

求环的个数,每个节点的度一定为2.

DFS:

#include <iostream>
#include <string.h>
using namespace std;

const int maxn = 200005;
int Map[maxn][maxn];
int vis[maxn],d[maxn];
int len,flag;
int n,m,sum;

int dfs(int t,int l)
{
	// if(flag == 1)
	if(flag==1)
		return 1;
	// 	return;
	for(int j=1;j<=n;j++)
	{
		if(Map[t][j]==1 && d[j]==2)
		{
			if(vis[j]==1 && l>1)
			{
				flag = 1;
				sum++;
				return 1;
			}
			//if()
			if(vis[j]==0)
			{
				vis[j]=1;
				//int t1 = ;
				//dfs(j,l+1);
				if(!dfs(j,l+1))
				{
					vis[j]=0;
				}
			}
		}
	}
	return 0;
}

int main()
{
	int u,v;
	sum=0;
	cin >> n >> m;
	for(int i=0;i<=n;i++)
	{
		d[i]=0;
		vis[i]=0;
		for(int j=0;j<=n;j++)
		{
			Map[i][j]=0;
		}
	}
	for(int i=1; i<=m; i++)
	{
		cin >> u >> v;
		d[u]++;
		d[v]++;
		Map[u][v]=1;
		Map[v][u]=1;
	}
	//len=0;flag=0;
	for(int i=1; i<=n; i++)
	{
		len=0;flag=0;
		if(vis[i]==0)
		{
			vis[i]=1;
			if(dfs(i,len)==0)
			{
				vis[i]=0;
			}
		}
		for(int j=1;j<=n; j++)
			cout<<vis[j]<< " ";
		cout<<endl;
	}
	cout<<sum<<endl;
	return 0;
}
并查集:
#include<iostream>
#include<string.h>
using namespace std;
const int maxn = 200005;

struct node
{
	int u,v;
}e[maxn];

int n,m;
int d[maxn],f[maxn];
int k;

int Find(int fa)
{
	if(f[fa]==fa)
		return fa;
	return f[fa] = Find(f[fa]);
}

void Union(int a,int b)
{
	int fa = Find(a);
	int fb = Find(b);
	if(fa == fb)
		k++;
	else
		f[fa] = fb;
}

int main()
{
	cin>>n>>m;
	k=0;
	memset(d,0,sizeof(d));
	for(int i=1;i<=n;i++)
	{
		f[i] = i;
	}
	for(int i=1;i<=m;i++)
	{
		cin>>e[i].u>>e[i].v;
		// if(e[i].u==e[i].v)
		// 	continue;
		d[e[i].u]++;
		d[e[i].v]++;
	}
	for(int i=1;i<=m;i++)
	{
		if(d[e[i].u]==2 && d[e[i].v]==2)
		{
			Union(e[i].u,e[i].v);
		}
	}
	cout << k << endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值