题意:给你n个整数,和一个k值(2<=k<=100),问在这n个数之间的n-1的位置任意放加减号,问有没有一种情况使结果整除k。
思路: dp[i][j]=dp[i-1][j-a[i]]||dp[i-1][j+a[i]];这里用到了数论里的一点知识,sum(a[i])%k = sum(a[i]%k)%k,假设dp[i][j]为取前i个数求和时余数为j的情况。只要dp[4][0]=1就表示能够整除。
代码如下:
#include <iostream>
using namespace std;
int a[10001];
int dp[10001][101];
int main()
{
int n,m,s,t,i,j;
cin>>n>>m;
for(i=1;i<=n;i++)
cin>>a[i];
s=a[1];
while(s<0)
s+=m;
dp[1][s%m]=1;
for (i=2;i<=n;i++)
{
for (j=0;j<m;j++)
{
s=j-a[i];
while(s<0)
s+=m;
t=j+a[i];
while(t<0)
t+=m;
dp[i][j]=dp[i-1][s%m]||dp[i-1][t%m];//状态转移方程
}
}
if (dp[n][0])
cout<<"Divisible"<<endl;
else
cout<<"Not Divisible"<<endl;
return 0;
}