题目大意:你要写一个OS,要实现磁盘碎片整理的功能。磁盘分为N个簇,一个文件可以占用K个簇,(1 <= K < N <= 10000),给出各个文件的占用磁盘的情况,也就是一个文件占用了哪些簇,想要进行碎片整理,就是把这些簇按顺序整理到磁盘的最顶部,例如给出示例:文件1:2 3 11 12,占用了4个簇,编号为1-4。
文件2:7,占用了1个簇,编号为5。
文件3:18 5 10,占用了3个簇,编号为6-8。
初始状态是这样的,0表示未占用:
簇号: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
逻辑编号:0 1 2 0 7 0 5 0 0 8 3 4 0 0 0 0 0 6
一共整理到最后,磁盘的情况最后是这样的:
簇号: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
逻辑编号:1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0
写一个程序得到整理好碎片最少需要多少步操作,并把这些操作打印出来。比如说第1个簇的内容放到第2个簇,打印出1 2。操作的定义是这样的:把一个簇的内容放到另个一个簇中,算是一步操作。
注意这里是Special Judge,意思是只要答案符合要求就行了,不必和SAMPLE中的OUTPUT一样也可以AC。
怎么才能找到最少的步数呢?我想了半天也没怎么想出来,于是看了看DISCUSS,总结以下:
遍历整个磁盘,设i为当前遍历的簇的编号,clusters为整个磁盘,clusters[i]表示第i个簇是否被占用,被哪个编号的文件片段占据。
(1) 如果clusters[i]为0,也就是未被使用,不进行处理。
(2) 如果clusters[i]为i,也就是已经到了整理好的状态,不进行处理。
(3) 如果clusters[i]不满足1和2,则又有两种情况。
情况一:磁盘使用情况成链:如图所示:
簇号: 1 2 3 4 5 6 ...
逻辑编号:5 0 4 2 3 0 ...
第1个簇被第5个文件片断占据,第5个簇又被第3个文件片段占据,第3个簇又被第4个文件片段占据,第4个簇又
被第2个文件片断占据,第2个簇未被占据。算法就很简单了,按照簇被访问的反方向:
clusters[2] = clusters[4],clusters[4] = clusters[3],clusters[3] = clusters[5],
clusters[5] = clusters[1],最后clusters[1] = 0。怎么样反方向呢,使用一个栈就好了。
情况二:磁盘使用情况成环:如图所示:
簇号: 1 2 3 4 5 6 ...
逻辑编号:5 1 4 2 3 0 ...
这种情况跟情况一差不多,只是最后clusters[2]指向了第1个簇,这样就形成了一个环,这里只是需要额外的
处理一下,就像交换2个变量一样,先在从磁盘末尾找到1个空的簇,因为题目保证至少有一个空的簇,先把
clusters[2]放到这个空的簇中,然后再执行情况1中的操作,最后再把空的簇的值赋给clusters[1]就好了。
最后注意一点,如果操作次数为0,则需要输出一行信息。
代码如下:
#include <cstdio>
#include <stack>
using namespace std;
int clusters[10001]; //簇的使用情况
int cluster_num, file_num; //簇的总数和文件个数
int counter = 1; //文件片段起始编号
int mov_num = 0; //操作总数
stack<int> s;
//过程详见博客讲解
void work()
{
int next;
for(int i = 1; i <= cluster_num; ++i)
{
if(clusters[i] == i)
{
continue;
}
else if(clusters[i] != 0)
{
s.push(i);
next = clusters[i];
bool is_circle = false;
while(true)
{
if(clusters[next] == i)
{
is_circle = true;
break;
}
else if(clusters[next] == 0)
{
is_circle = false;
break;
}
s.push(next);
next = clusters[next];
}
int t, j;
if(is_circle == true)
{
for(j = cluster_num; j >= 0; --j)
{
if(clusters[j] == 0)
{
break;
}
}
printf("%d %d\n", next, j);
clusters[j] = clusters[next];
while(!s.empty())
{
t = s.top();
printf("%d %d\n", t, next);
clusters[next] = clusters[t];
next = t;
s.pop();
mov_num++;
}
clusters[next] = clusters[j];
clusters[j] = 0;
printf("%d %d\n", j, next);
} else
{
while(!s.empty())
{
t = s.top();
printf("%d %d\n", t, next);
clusters[next] = clusters[t];
next = t;
s.pop();
mov_num++;
}
clusters[next] = 0;
}
}
//别忘了
if(mov_num == 0)
{
printf("No optimization needed\n");
}
}
}
int main()
{
//freopen("e:/data.txt", "r", stdin);
scanf("%d %d", &cluster_num, &file_num);
for(int i = 0; i < file_num; ++i)
{
int n, t;
scanf("%d", &n);
for(int j = 0; j < n; ++j)
{
scanf("%d", &t);
clusters[t] = counter++;
}
}
work();
return 0;
}