AI对话小技巧

  • 角色设定:擅于使用 System 给 GPT 设定角色和任务,如“哲学大师"
  • 指令注入:在 System 中注入常驻任务指令,如“主题创作"
  • 问题拆解:将复杂问题拆解成的子问题,分步骤执行,如:Debug 和多任务
  • 分层设计:创作长篇内容,分层提问,先概览再章节,最后补充细节,如:小说生成
  • 编程思维:将 prompt 当做编程语言,主动设计变量、模板和正文,如:评估模型输出质量
  • few-shot:基于样例的 prompt 设计,规范推理路径和输出样式,如:构造训练数据

DEMO

一、角色设定(哲学对话场景)

[System]
你是一位精通东西方哲学的导师,擅长用苏格拉底式提问引导思考。当用户提出抽象问题时,先用经典哲学理论框架分析,再结合现实案例类比,最后提出开放性问题促进反思。

[User]
生命的意义是什么?

输出效果:

AI会引用尼采"超人哲学"与庄子"逍遥游"对比,用登山者不同阶段心态变化作比喻,最后追问:“您认为意义的追寻过程是否比结果更重要?”

AI每次回答都会参考System。因此需要把通用性的信息、要求、规范等放到这里。同时也避免了在后续对话重复输入占用上下文

二、指令注入(小说创作场景)

[System]
你是一个科幻小说创作引擎,每次输出都需遵循:1. 新增2条未来科技设定 2. 保持悬疑氛围 3. 结尾抛出未解之谜

[User]
请续写主角发现地下实验室的情节...

输出特点:

每次生成都会自动添加如"量子烙印追踪器"等新设定,保持段落间的悬疑线索连贯,结尾抛出"培养舱内的克隆体竟有主角记忆"等悬念。

三、问题拆解(编程调试场景)

我的Python爬虫报错AttributeError,请帮助排查:
1. 先请求我提供报错上下文和代码片段
2. 分析可能触发该异常的三种场景
3. 给出分步骤检查方案

交互过程:

AI会逐步要求提供错误日志→解释选择器误用/模块未导入等情况→指导添加try-except块定位具体出错行

四、分层设计(论文写作场景)

请协助撰写《人工智能伦理》论文:
5. 先输出三级大纲结构
6. 选择"算法偏见"子课题深入
7. 为该章节补充3个现实案例
8. 将案例2扩展为500字段落

结构化输出:

自动生成包含理论框架→现实影响→解决方案的递进结构,提供招聘算法歧视等案例,并按需展开细节。

五、编程思维(内容评估场景)

[System]
评估维度 = (事实准确性 逻辑性 可读性)
评分标准 = 5分制(1-差 5-优)
反馈模板 = """评分:{维度:得分} 
改进建议:{具体建议}"""

[User]
评估以下文本:"量子计算机能瞬间解所有密码..."

结构化输出:

事实准确性:2分(量子计算机需特定算法)
建议补充Shor算法原理说明…

六、Few-shot(数据生成场景)

根据示例生成客服对话:
输入:<订单号1123未收到货>
输出:{"问题类型":"物流异常", "处理步骤":[1.核实物流信息,2.联系仓库确认...]}

现在请处理新输入:<收到的手机颜色错误>

规范输出:

严格遵循JSON格式,自动归类为"商品错发"类型,生成包含退换货流程的标准处理步骤。

这些技巧可组合使用,例如先设定"营养学家"角色,再注入"所有建议需附带参考文献"的指令,最后用few-shot规范报告格式,能系统提升AI输出的专业性和可用性。

总结

分层、编程思维、问题拆解的目的是构造一个思维树,让大模型知道怎么解决用户输入的问题。

R1 好用,就是大模型开始自己尝试构建思维树。此时可以参考R1的思维过程是否有问题,如果有问题,就在prompt中更正,重新提问。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值