CF 160D Edges in MST 最小生成树 + 割边

原题链接

文章目录

题意

给定n个点和m条边,有三种情况

  1. 这条边是最小生成树所必须的边
  2. 这条边存在于不只一个最小生成树中
  3. 这条边不包含在任何一个最小生成树中

询问所有边的情况。

分析

如果一条边可以替换别的边成为最小生成树的边,那么它们的权值肯定是相同的,因此我们可以考虑所有权值相等的边。我们将这些边所在的连通块相连,如果存在一条边是桥,那么它一定是不可或缺的,所以答案记为any,否则为at least one。然后就是正常的最小生成树做法,如果这当前边的两个点都已经在连通块中了,那么这条边一定是none。

AC Code

#include <bits/stdc++.h>
#define ACM_LOCAL
#define fi first
#define se second
#define pb push_back
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 1e6 + 10, M = 5e5 + 10, INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
int n, m, k, idx, fa[N], vis[N], dfn[N], low[N], bridge[N];
int cnt, h[N], ans[N];
int find(int x) {return fa[x] == x ? x : fa[x] = find(fa[x]);}
struct Edge {
    int u, v, w, id;
    bool operator < (const Edge &rhs) const {
        return w < rhs.w;
    }
}e[N];

struct edge {
    int to, next, id;
}ed[N];

void add(int u, int v, int id) {
    ed[cnt].to = v;
    ed[cnt].next = h[u];
    ed[cnt].id = id;
    h[u] = cnt++;
}

void tarjan(int x, int edge) {
    low[x] = dfn[x] = ++idx;
    for (int i = h[x]; ~i; i = ed[i].next) {
        int v = ed[i].to;
        if (!dfn[v]) {
            tarjan(v, i);
            low[x] = min(low[x], low[v]);
            if (low[v] > dfn[x]) ans[ed[i].id] = 1;
        } else if (i != (edge^1))
            low[x] = min(low[x], dfn[v]);
    }
}

void solve() {
    cin >> n >> m; for (int i = 1; i <= n; i++) fa[i] = i;
    for (int i = 1; i <= m; i++) cin >> e[i].u >> e[i].v >> e[i].w, e[i].id = i;
    sort(e+1, e+m+1);
    for (int i = 1; i <= m; i++) {
        int l = i, r = i;
        while (e[l].w == e[r].w) r++;
        for (int k = l; k < r; k++) {
            int u = find(e[k].u), v = find(e[k].v);
            if (u != v) {
                dfn[u] = dfn[v] = low[u] = low[v] = idx = cnt = 0;
                h[u] = h[v] = -1;
            }
        }
        for (int k = l; k < r; k++) {
            int u = find(e[k].u), v = find(e[k].v);
            if (u != v) {
                add(u, v, e[k].id), add(v, u, e[k].id);
                ans[e[k].id] = 2;
            }
        }
        for (int k = l; k < r; k++) {
            if (!dfn[find(e[k].u)])
                tarjan(find(e[k].u), 0);
        }
        for (int k = l; k < r; k++)
            if (find(e[k].u) != find(e[k].v))
                fa[find(e[k].u)] = find(e[k].v);
        i = r - 1;
    }
    for (int i = 1; i <= m; i++) {
        if (ans[i] == 1) printf("any\n");
        else if (ans[i] == 2) printf("at least one\n");
        else printf("none\n");
    }
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值