图论及其应用:第二次作业

图论及其应用:第二次作业
1.题一 某医院急诊某夜有 169 名病人需要输血,假设每人需要 1 个单位的血量,对 A, B, O, AB
四种血型的需求分别是 39, 38, 42, 50 单位,医院共有 170 单位的储备,对应 A, B, O, AB 分别为
46, 34, 45, 45 单位。
(1)请用最大流模型求解最多可以满足多少病人;
(2)找出一个容量小于 169 的割,并向精通医学然而并不十分精通图论的医院工作人员用他们可
以理解的方式解释为什么不能满足所有病人。

题二 已知图中任何两条边的权值不相等,证明以下两个结论成立:
• 任何割中的最短的边在所有的最小生成树中;
• 任何圈中的最长边不在任何一棵最小生成树中。

证明:

  • (反证法)设一个割把图G分为(S,T),边(u,v)是这个割中最短的边且 u ∈ S , v ∈ T u\in S,v\in T uS,vT,假设该边不在G的一棵最小生成树中,由生成树的定义可得,必定存在一点 w ∈ S w\in S wS,(w,v)在生成树上且(w,v)比(u,v)短,与条件"(u,v)是该割中最短的边矛盾",所以边(u,v),在该生成树上。
  • (反证法)由树的定义(无圈连通图)可知,任何圈都至少会被删去一条边,假设生成树 T T T包含了一条最长的边。将这条最长边除去,同时添加另一条之前被删去的边,则所得的生成树的权值和更小,矛盾。
题三 给定任一有偶数条边且每个顶点度数为偶数的连通图 G,证明可以把每条边染成黑白两种颜色中的一种,对每个顶点,与之相连的黑边与白边一样多。

因为 G G G的顶点个数都是偶数,所以存在欧拉回路。从一个起点出发走这个欧拉回路,在这个过程中交替将边染成黑色和白色,因为边数是偶数,所以起点发出的边和终点发出的边颜色一定相反。所以对起点来说黑色边和白色边一样多,由于任意顶点都可以作为起点和终点,所以对每个顶点,与之相连的黑边和白边是一样多的。

题四 G = (V, E) 为简单 Euler 图,证明或推翻以下推断:
1. 若 G 是偶图,则 m = |E| 为偶数;

将偶图 G G G分为两个部分 S S S T T T,由偶图的定义可知, S S S T T T内部的节点都没有直接相连的边,从一个节点出发走欧拉回路,假如从 S S S的一个顶点出发,则下一步一定是走到 T T T的一个顶点,再下一步又是走回 S S S的一个顶点,一次类推,则所形成的的欧拉回路一定是由从 S S S T T T的边和从 T T T S S S的边交替形成的回路,并最终回到起点。因此所以 m m m为偶数。

• 若 n = |V | 是偶数,则 m 也是偶数;

假命题。

如下图,该图有欧拉回路 A B C D E F D A ABCDEFDA ABCDEFDA, 并且有6个顶点(偶数个)但有7条边(奇数条)。

在这里插入图片描述

• e 与 f 为关联的两条边,他们必然连续出现在某条 Euler 回路里。

假命题。

在下图中, A D AD AD C D CD CD相关联,但他们在任意欧拉回路中都不连续出现。
在这里插入图片描述

题五 给定每边长度为一的连通偶图 G 以及顶点 v ∈ V (G),证明对 G 中所有的边 xy ∈ E(G), v到 x 的最短路不可能和 v 到 y 的最短路一样长。

有偶图的定义可知,可将图 G G G分为两个部分 S S S T T T, S S S T T T的内部节点没有直接相连的边,对于任意边 x y xy xy,不妨设 x ∈ S , y ∈ T , V ∈ S x\in{S},y\in{T},V\in{S} xS,yT,VS ,由于偶图中的路径一定是交替从 S S S T T T和从 T T T S S S的,所以 v x vx vx的长度一定是偶数, v y vy vy的长度一定是奇数,所以 v到 x 的最短路不可能和 v 到 y 的最短路一样长。

题六 证明 Peterson 图不是 H 图。

彼得森图中没有长度为 3 或者 4 的回路。假设彼得森图存在哈密顿回路,则哈密顿回路包含 10 条边,而彼得森图中剩余的 5 条边分别连接该哈密顿回路中不相邻的点。因为彼得森图的图中每个点的度数为 3,所以该哈密顿回路的每个点均管理一条剩余边。每一条剩余边的两个端点的距离至少为 4,否则出现长度为 3 或者4 的回路。并且至少存在一条剩余边 e,它的两个端点在哈密顿回路中距离为 4,否则 5 条剩余边的端点距离均为 5,则出现长度为4 的回路。设v是哈密顿回路中与e的一个端点距离为5 的点,则由v关联的剩余边和e可以找到长度为3或者4的回路, 矛盾。

题七 对 n ≥ 4,如果 n 阶完全图 Kn 可以被划分成边不交的长度为 4 的圈,证明 n = 1 mod 8。

n n n阶完全图的边数 ∣ E ∣ = n ( n − 1 ) 2 |E|=\frac{n(n-1)}{2} E=2n(n1) ,假设该图可以划分为 k k k个边不交的长度为4的圈,则有 E = 4 K E=4K E=4K,所以有 n ( n − 1 ) 2 = 4 k \frac{n(n-1)}{2}=4k 2n(n1)=4k ,且该图为欧拉图,因此每个顶点的对数均为偶数,所以有 ( n − 1 ) m o d 2 = 0 (n-1)mod2=0 (n1)mod2=0 ,所以 n n n为奇数,且 n ( n − 1 ) 8 = k \frac{n(n-1)}{8}=k 8n(n1)=k ,所以 ( n − 1 ) m o d 8 = 0 (n-1)mod8=0 (n1)mod8=0 所以 n = 1 m o d 8 n=1 mod 8 n=1mod8

题八 给定一棵树 T 以及 T 的 k 棵子树 T 1 , T 2 , ⋅ ⋅ ⋅ , T k T_1, T_2, · · · , T_k T1,T2,,Tk,已知这 k 棵子树两两均有公共顶点,即对任意$ 1 ≤ i < j ≤ k$ 有 V ( T i ) ∩ V ( T j ) ≠ ∅ V (T_i) \cap V (T_j)\neq \varnothing V(Ti)V(Tj)=,证明 $V (T_1) \cap V (T_2) \cap \dots \cap V (T_k) \neq \varnothing $。

反证法。若 V ( T 1 ) ∩ V ( T 2 ) ∩ ⋯ ∩ V ( T i ) = ∅ V(T_1)\cap V(T_2)\cap\dots\cap V(T_{i}) =\varnothing V(T1)V(T2)V(Ti)=,设 V ( T 1 ) ∩ V ( T 2 ) ∩ ⋯ ∩ V ( T i − 1 ) = S V(T_1)\cap V(T_2)\cap\dots\cap V(T_{i-1}) =S V(T1)V(T2)V(Ti1)=S,则 T i T_i Ti中一定不包含 S S S中的顶点,因为 T T T是一棵树,所以 T − S T-S TS剩下的图中至少有一个连通分支,且 T i T_i Ti只能位于其中一个连通分支中,设 x x x表示 T T T所在的连通分支中与S直接连接的那个点且 x ∉ S x \notin S x/S,因为 T j ∩ T i ≠ ∅ , i = 1 , 2 , 3.. i − 1 T_j \cap T_i \ne \varnothing , i=1,2,3..i-1 TjTi=,i=1,2,3..i1,令 T j ∩ T i = M j T_j\cap T_i=M_j TjTi=Mj,则每个 M j M_j Mj一定包含顶点 x x x,否则这些子树无法既与 T i T_i Ti有公共节点又包含 S S S,因此与 x ∉ S x\notin S x/S产生矛盾。

因此当 V ( T 1 ) ∩ V ( T 2 ) ∩ ⋯ ∩ V ( T i − 1 ) ≠ ∅ V(T_1)\cap V(T_2)\cap\dots\cap V(T_{i-1}) \ne\varnothing V(T1)V(T2)V(Ti1)=时,有 V ( T 1 ) ∩ V ( T 2 ) ∩ ⋯ ∩ V ( T i ) ≠ ∅ V(T_1)\cap V(T_2)\cap\dots\cap V(T_{i}) \ne\varnothing V(T1)V(T2)V(Ti)=,且 V ( T 1 ) ∩ V ( T 2 ) ≠ ∅ V(T_1)\cap V(T_2)\ne \varnothing V(T1)V(T2)=,那么不断添加子树即可得到$V (T_1) \cap V (T_2) \cap \dots \cap V (T_k) \neq \varnothing $ 。

题九 、 C C C 为简单图 G G G 的一个点不重复的圈,已知有一条长度为 k k k 的路 P P P 连接 C C C 上的两个顶点 x x x y y y,证明 G G G 包含一条长度至少为 2 k \sqrt{2k} 2k 的点不重复的圈 。
  • 7
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值