【Nowcoder】城市网络 树上倍增

这篇博客介绍了如何利用树上动态规划和倍增算法解决一个问题:在一棵树中,每次选取两个节点,使得其中一个节点在另一个节点通向根节点的路径上,且携带的珠宝价值小于沿途遇到的第一个权值更大的节点,计算交换次数。文章通过分析和代码展示了如何找出第一个大于当前节点权值的祖先节点,并给出了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题链接:https://ac.nowcoder.com/acm/problem/13331

题意

有一棵树,树上每个节点都有一个权值,1为根节点。每次选择两个节点u,v保证v在u通往根节点的路径上,每次从u出发,身上携带价格为w的珠宝,每次遇到权值比你大的节点就可以交换一次,问一共会交换多少次。

分析

看到这类问题一般就会往倍增上面思考,难点就是如何找出第一个大于你权值的祖先节点。在一个序列上我们知道用单调栈来实现,在树上其实可以用更简单的倍增解决

  1. 如果父节点就比你大,直接将f[x][0]=fa
  2. 如果父节点不满足,将当前节点设为fa,然后一直倍增找到第一个大于你的点

思路是比较好想的,实现起来会有一些细节需要处理。

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int ul;
typedef pair<int, int> PII;
const int inf = 0x3f3f3f3f;
const int N = 5e5 + 10;
const int M = 1e6 + 10;
const ll mod = 1e9 + 7;
const double eps = 1e-8;

#define lowbit(i) (i & -i)
#define Debug(x) cout << (x) << endl
#define fi first
#define se second
#define mem memset
#define endl '\n'

int a[N], f[N][21], dep[N];
vector<int> g[N];
void dfs(int x, int fa) {
    dep[x] = dep[fa] + 1;
    if (a[fa] > a[x]) f[x][0] = fa;
    else {
        int now = fa;
        for (int i = 20; ~i; i--) {
            if (f[now][i] && a[f[now][i]] <= a[x]) {
                now = f[now][i];
            }
        }
        f[x][0] = f[now][0];
    }
    for (int i = 1; i <= 20; i++) f[x][i] = f[f[x][i-1]][i-1];
    for (auto v : g[x]) {
        if (v == fa) continue;
        dfs(v, x);
    }
}
inline void solve() {
    int n, m; cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> a[i];
    for (int i = 1; i <= n-1; i++) {
        int u, v; cin >> u >> v;
        g[u].push_back(v);
        g[v].push_back(u);
    }
    dfs(1, 0);
    while (m--) {
        int u, v, w;
        cin >> u >> v >> w;
        int now;
        if (a[u] > w) {
            now = u;
        } else {
            now = u;
            for (int i = 20; ~i; i--) {
                if (f[now][i] && a[f[now][i]] <= w) {
                    now = f[now][i];
                }
            }
            if (dep[f[now][0]] < dep[v]) {
                cout << 0 << endl;
                continue;
            }
            now = f[now][0];
        }
        int ans = 1;
        for (int i = 20; ~i; i--) {
            if (f[now][i] && dep[f[now][i]] >= dep[v]) {
                ans += (1 << i);
                now = f[now][i];
            }
        }
        cout << ans << endl;
    }
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
    signed test_index_for_debug = 1;
    char acm_local_for_debug = 0;
    do {
        if (acm_local_for_debug == '$') exit(0);
        if (test_index_for_debug > 20)
            throw runtime_error("Check the stdin!!!");
        auto start_clock_for_debug = clock();
        solve();
        auto end_clock_for_debug = clock();
        cout << "Test " << test_index_for_debug << " successful" << endl;
        cerr << "Test " << test_index_for_debug++ << " Run Time: "
             << double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
        cout << "--------------------------------------------------" << endl;
    } while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#else
    solve();
#endif
    return 0;
}
在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
### LCA 最近公共祖先问题在树结构中使用倍增法的解题方法 #### 倍增算法简介 倍增算法是一种高效的技术,在路径查询、区间问题以及树的祖先查询等方面有着广泛应用。这种算法特别适合用于解决涉及多个层次关系的问题,比如最近公共祖先(LCA)问题[^1]。 #### LCA 定义及其重要性 在有根树中,对于两个节点 \(u\) 和 \(v\),LCA 是所有公共祖先中最深的那个节点。这个概念不仅限于普通的父子关系,还包括节点本身作为自己祖先的情况。因此,在任何给定的一对节点间都存在唯一的LCA[^2]。 #### 使用倍增法求解LCA的具体过程 为了提高查找效率,通常会对树进行预处理。具体来说,就是利用二进制表示来记录每个节点向上跳转\(2^k\)步后的父节点位置。这样做的好处是可以快速定位到目标节点之间的共同祖先,从而大大减少了实际计算量。以下是基于此思想的一种常见实现方式: ```cpp const int MAXN = 1e5 + 7; int fa[MAXN][20]; // 存储第i个结点往上走2^j步到达的父亲编号 int dep[MAXN]; // 结点深度数组 void dfs(int u,int father){ fa[u][0]=father; // 初始化fa[i][0],即直接父亲 dep[u]=dep[father]+1; for (auto &v : adj[u]) { if(v==father) continue; dfs(v,u); } } // 预处理f表 for(int j=1;(1<<j)<n;j++) for(int i=1;i<=n;i++) if(fa[i][j-1]!=-1) fa[i][j]=fa[fa[i][j-1]][j-1]; pair<int,int> getlca(int a,int b){ while(a!=b){ if(dep[a]<dep[b]) swap(a,b); int k=log2(dep[a]-dep[b]); a=fa[a][k]; } return {a,dep[a]}; } ``` 上述代码片段展示了如何构建倍增表格`fa[][]`并通过深度优先搜索初始化各个节点的信息。之后通过简单的循环操作即可完成任意两点之间LCA的查询工作[^4]。 #### 应用场景扩展 除了基本的LCA查询外,倍增法还可以与其他高级数据结构相结合,如并查集和树链剖分等,进一步优化复杂度较高的题目解答方案。此外,在动态规划领域也经常能看到它的身影,尤其是在那些涉及到子树范围内属性汇总或者状态转移方向确定等问题上[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值