城市网络
题目描述
有一个树状的城市网络(即 n 个城市由 n-1 条道路连接的连通图),首都为 1 号城市,每个城市售卖价值为 ai 的珠宝。
你是一个珠宝商,现在安排有 q 次行程,每次行程为从 u 号城市前往 v 号城市(走最短路径),保证 v 在 u 前往首都的最短路径上。 在每次行程开始时,你手上有价值为 c 的珠宝(每次行程可能不同),并且每经过一个城市时(包括 u 和 v ),假如那个城市中售卖的珠宝比你现在手上的每一种珠宝都要优秀(价值更高,即严格大于),那么你就会选择购入。
现在你想要对每一次行程,求出会进行多少次购买事件。
输入描述:
第一行,两个正整数 n , q (2 ≤ n ≤ 10^5 , 1 ≤ q ≤ 10^5)。
第二行,n 个正整数 a_i (1 ≤ a_i ≤ 10^5) 描述每个城市售卖的珠宝的价值。
接下来 n-1 行,每行描述一条道路 x , y (1 ≤ x,y ≤ n),表示有一条连接 x 和 y 的道路。
接下来 q 行,每行描述一次行程 u , v , c (1 ≤ u,v ≤ n , 1 ≤ c ≤ 10^5)。
输出描述:
对于每次行程输出一行,为所购买次数。
以前以为学了LCA就会了树上倍增,这道题才发现LCA只是树上倍增的一个运用而已;
树上倍增更多的是一种思想,跟树链剖分有点类似,都是把树上问题转化为线性问题;
所以这里 fa[i][j] 表示第 i 个结点往上走买了 2^j 个珠宝到达的最近的点,更LCA的fa[i][j]完全不同;
倍增一定要知道fa[i][0]的值,所以怎么算每个结点的fa[i][0]也是特别重要的,暴力算肯定不行,也需要用到倍增思路,理解代码:
int x=fat;
for(int k=lg[deep[p]]-1;k>=0;k--){
if(fa[x][k]&&a[fa[x][k]]<=a[p]) x=fa[x][k];//找到第一个大于a[p]的点
}
if(a[x]>a[p]) fa[p][0]=x;
else fa[p][0]=fa[x][0];
每次询问只要保证fa[x][j]的深度小于y(目标点)的深度即可,因为这个LCA的询问还是不一样的,题目告诉你目标点 y 一定在 x 到 1 的最短路径上;所以 x 一定比 y 深度大;
代码:
#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,int>
#define ls k<<1
#define rs k<<1|1