1. 题意:主要是两点,就是type之间的距离指的是相同位置不同的字母数,然后公式是全部的(n-1)个距离相加的最小值。这时候就可以看出来是用最小生成树了。另外,体重求距离相加倒数的最大值,就是距离之和的最小值。
2.总体来说就是prim生成树。但是有两点问题,一个是自已一直以为需要用set,但是发现不需要。只需要用一个数组存着目前每个点的最小值(访问过的用一个boolean数组控制),然后找出其中最小的就可以了。这就不用每次用一个set存起来下次需要用的点了。
3. 这里有个问题,找了好久,就是prime里面的min_step要放到while循环里面。因为每一次都需要重新赋值。这点要注意。在这种题目中好多需要每次都清空,因为有多组测试。还有一点,不要忘了最后输出的需要有个句号。
4. 这里重点说一下为什么可以不用set存储即将考察的点。因为这是完全图。就是每一点都和其他所有点相连的。如果没有这个条件,需要在考试的时候赋值,把没有连接变成inf。这时候最短线段数组存储的也会有无限大。
4. 主要参考:点击打开链接。表示感谢
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int inf = 10;//无线长,文中距离最大是7.
const int large = 2001;//顶点数最多。
char str[large][8];//存储类别名字。
int dist[large][large]={0};//存储线段
//int q;
int n;//类别数目。
int weight(int a, int b)
{
int amount = 0;
for(int k = 0; k<7; k++ )
{
if(str[a][k]!=str[b][k])
amount++;
}
return amount;
}
int prime()
{
int s = 1; //定点
int min_step;//目前所有可选择原点所拥有的最短路。
int nodeNum=1; //目前的节点总数
bool flag[large];//标志每个点是否已经在生成树里
int num = 0;//总的权重
int min_dist[large];//存储现在每个点的最短路。
int flag_point;//目前最短线段的点
memset(min_dist, inf, sizeof(min_dist));
memset(flag, false, sizeof(flag));
flag[s] = true;
while(true)
{
min_step=inf;
if(nodeNum==n)
break;
//cout<<"测试nodeNum: "<<nodeNum<<endl;
for(int i =2; i <= n; i++)
{
if(!flag[i]&&min_dist[i]>dist[s][i])
{
min_dist[i] = dist[s][i];
//cout<<"测试:"<<dist[s][i]<<endl;
}
if(!flag[i]&&min_step>min_dist[i])
{
min_step = min_dist[i];
flag_point = i;
}
}
// cout<<"test: min_step: "<<min_step<<endl;
s = flag_point;
flag[s] = true;
num+=min_step;
nodeNum++;
}
return num;
}
int main()
{
//这是读取文件,debug的时候比较方便。但是千万不要忘了在提交的时候注释掉。
//freopen("input.txt","r",stdin);
while(cin>>n&&n)
{
//输入
for(int i = 1; i <= n; i++)
{
cin>>str[i];
}
for(int i = 1; i <= n-1; i++)
{
for(int j = i+1; j <= n; j++)
{
dist[i][j] = dist[j][i] = weight(i,j);
}
}
//请不要忘记最后的句号。
cout<<"The highest possible quality is 1/"<<prime()<<"."<<endl;
}
}