1. 一定要先看网络流。
2. 本题可以转换成网络流里面的最大流。只要把生产者都连到同一个起始原点,消费者都连接到一个终止点。这样就转换成了到终止点的最大流问题。
3. 关于网络流,建议到网上看一下,理论上主要有三点,就是f<c(就是流量不能超过管道的容量),斜对称性,流量平衡(出去起始点,其他所有点的出入f(u,v)加在一起是0)。
4. 实际操作的时候,需要明白两个概念。增广路,残余网络。首先,要明白求最大流的话,指的是在起始点流量无穷的情况下,同时能到达终点的流量有多大。网上好多给出的图里面就有各个线路的f(flow: 流量)和c(compacity: 容量)。我觉得其实是一种误导。在一开始,是没有f的。你在计算过程中才有。在数据初始化的时候也没有必要考虑f。增广路算法就是对于一个网络,每次找到一个通路,这条通路所能通过的最大流量是由最小的那一段决定的。而这一条通路也是整个网络最大流的一部分。所以,每找到一个通路,就把这条通路的能通过的最大流加入网络流最大流。知道没有通路了,就可以说已经找到网络流的最大流。这是一个定理。但其实很好理解。它的意思就是最大化每个可用管道的负载而已。因为是不断增加,扩展的,所以就是增广路了。还有残余网络,就是每找到一个通路,把他占用的资源从原来网络里面减去。剩下的就是一个残余网络了。所以其实残余网络只是一个相对概念。没什么特别意思。好多资料把他单独讲,感觉反而难以理解了。
5. 还有一个问题没有解决,就是怎么确定找到的增广路一定是全部。这个推荐看一下这个博客:
http://blog.csdn.net/qiankun1993/article/details/6782838
6. 然后就可以理解所谓的最大流问题了,就可以写代码了。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int maxs = 103;
const int inf = 100000;
int n, np,nc,m;
int map[maxs][maxs]; //表示图
int pre[maxs];//记录前面一点
int dfs(int a,int b)
{
//每次一个简单的深搜。用迭代的方法。
std::queue<int> q ;
int flow[maxs];
q.push(a);
bool visit[maxs];
//初始化一些变量
for(int i = 0; i < maxs; i++)
{
visit[i] = false;
}
flow[0] = 0;
for(int i = 1; i <= b; i++)
{
flow[i] = -1;
flow[0] +=map[0][i];
}
int temp ;
//找到最后或者此路不同。
while(!q.empty())
{
temp = q.front();
q.pop();
for(int i = 1; i<=n+1;i++)
{
if(map[temp][i]&&!visit[i])
{
visit[i] = true;
flow[i] = (flow[temp]<map[temp][i] ? flow[temp] : map[temp][i]);
pre[i] = temp;
q.push(i);
}
}
}
if(flow[b]!=-1)
{
return flow[b];
}
return 0;
}
int maxFlow(int a,int b)
{
int result = 0;
int temp ;
int preTemp;
int nowTemp;
//每次调用需要对残余网络更新。
while((temp=dfs(a,b))!=0)
{
nowTemp = b;
while(nowTemp!=a)
{
preTemp = pre[nowTemp];
map[preTemp][nowTemp] -= temp;
map[nowTemp][preTemp] += temp;
nowTemp = preTemp;
}
result+=temp;
}
return result;
}
int main()
{
char temp;
int temp1,temp2,temp3;
while((cin>>n>>np>>nc>>m))
{
//输入,初始化,题目点是从0开始的,这里加一,吧0 作为源点,吧n+1作为终点
memset(map,0,sizeof(map));
for(int i = 0; i < m; i++)
{
cin>>temp;
cin>>temp1;
cin>>temp;
cin>>temp2;
cin>>temp;
cin>>temp3;
map[temp1+1][temp2+1]=temp3;
}
for(int i = 0; i < np;i++)
{
cin>>temp;
cin>>temp1;
cin>>temp;
cin>>temp2;
map[0][temp1+1] = temp2;
}
for(int i = 0; i < nc; i++)
{
cin>>temp;
cin>>temp1;
cin>>temp;
cin>>temp2;
map[temp1+1][n+1] = temp2;
}
cout<<maxFlow(0,n+1)<<endl;
}
return 0;
}