深度剖析多模态大模型中的视频编码器算法

在这里插入图片描述

写在前面

随着多模态大型语言模型(MLLM)的兴起,AI 理解世界的能力从静态的文本和图像,进一步拓展到了动态的、包含丰富时空信息的视频。视频作为一种承载了动作、交互、场景变化和声音(虽然本文主要聚焦视觉部分)的复杂数据形式,为 MLLM 提供了理解真实世界动态和因果关系的关键线索。

然而,要让 LLM 有效地“消化”和理解视频内容,一个强大的视频编码器(Video Encoder) 是不可或缺的“前端”。视频编码器的核心任务是将原始的视频像素流(一系列图像帧)转换成紧凑、信息丰富、且能被后续 LLM 或多模态融合模块有效利用的特征表示(Feature Representation)

与图像编码器(如 ViT, ResNet)相比,视频编码器需要额外处理时间维度上的信息,捕捉运动、变化和时序依赖。这带来了独特的设计挑战和多样的技术路径。

本文将深入探讨当前用于 MLLM(或更广义的视频理解任务)的视频编码器主流算法,涵盖其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值