【热点项目】Paper2Code:一个从论文到代码的自动化Agent

一、基本介绍(https://github.com/going-doer/Paper2Code)

1.1 项目背景

Paper2Code是基于大语言模型的创新性代码生成框架,旨在解决学术界与工业界长期存在的"论文复现难题"。项目通过多智能体协作机制,将科研论文自动转化为可执行代码仓库,在arXiv论文测试集上实现87.3%的代码生成完整度,相比传统单模型方案提升32%。

1.2 核心功能

  • 三阶段流水线:规划(Planning)、分析(Analyzing)、编码(Coding)的递进式处理
  • 多模式输入:支持PDF原始论文和LaTeX源码两种输入方式
  • 智能评估系统:提供基于参考(与官方实现对比)和无参考两种评估模式
  • 混合模型架构:兼容OpenAI API与开源模型(默认使用DeepSeek-Coder-V2)

1.3 技术架构

Planning Agent
├── 论文结构解析
├── 模块依赖分析
└── 生成开发计划书

Analyzing Agent
├── 数学公式转译
├── 算法伪代码解析
└── API接口设计

Coding Agent
├── 代码框架生成
├── 单元测试编写
└── 文档自动生成

二、快速上手

2.1 环境配置

# 基础环境(Python 3.10+)
pip install -r requirements.txt

# OpenAI模式
export OPENAI_API_KEY="sk-xxx"

# 开源模型模式(需配置vLLM)
docker run --runtime nvidia --gpus all \
    -v ~/model_cache:/model_cache \
    -p 8000:8000 \
    -it vllm/vllm-openai:latest \
    --model deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct

2.2 运行示例

以Transformer论文为例生成代码仓库:

# 使用OpenAI接口(约消耗$0.6)
python scripts/run.py --paper examples/Transformer.pdf

# 使用开源模型
python scripts/run_llm.py --port 8000

生成结果目录结构示例:

Transformer_repo
├── model
│   ├── attention.py      # 多头注意力实现
│   └── transformer.py    # 完整模型架构
├── data
│   └── tokenizer.py      # BPE分词器实现
├── tests
│   └── test_attention.py # 自生成的单元测试
└── requirements.txt       # 自动推断的依赖项

三、简单示例

3.1 教育领域

# 自动生成课程实验框架
paper2code --input "CS231n Lecture Notes" --output_dir ./assignment

# 输出结果包含:
# - 图像分类模型模板代码
# - CIFAR-10数据加载器
# - 训练流程脚手架

3.2 工业研发

# 复现最新论文模型
paper2code --input "arxiv:2405.1234" --mode fast

# 生成结果包含:
# - 分布式训练适配代码
# - Triton推理优化实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值