DeepSeek技术点MLA逻辑解析

在这里插入图片描述

写在前面

大型语言模型 (LLM) 处理长上下文的能力是衡量其智能水平和实用性的关键指标之一。从最初的几千 Tokens 到如今的数十万甚至数百万 Tokens,上下文窗口的扩展一直是 LLM 发展的前沿阵地。然而,标准的 Transformer 注意力机制(Multi-Head Attention, MHA)在处理长序列时面临着计算量和显存占用的平方级增长问题,这成为了制约长上下文能力的主要瓶颈。

为了突破这一瓶颈,各种高效注意力机制应运而生。DeepSeek 团队在其先进的 DeepSeek-V2 模型中,引入了一项名为 MLA (Multi-head Latent Attention) 的关键技术,旨在显著压缩 KV 缓存 (Key-Value Cache),从而以较低的计算和存储成本支持极长的上下文窗口。

MLA 不是简单地替代 MHA,而是作为一种与 MHA 协同工作的机制,通过引入“潜在(Latent)”表示来对历史信息进行高效压缩。那么,MLA 的核心原理是什么?它与 MHA 有何关联与区别?它如何处理长序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值