矩阵应用
kalilili
双眼闭三年。
展开
-
HDU 2157 How many ways??(经典矩阵快速幂)
题意:求A经过K个点到B方案数方法一:1个0 1 的矩阵 Aa[i][j] = 1 表示i 到 j可达 或者说 i 到 j 有1条路 或者说i到j经过一个点的方案数 路可以重复走 而A2 = A* Aa[i][j] 的含义是从i到j经过2个点的方案数A的k次方 A[i,j]代表 i到j走k步的方案有a[i][j]矩阵乘法的定义居然和这个模型如此契合,佩服,所原创 2015-02-27 15:20:11 · 762 阅读 · 0 评论 -
UVA 11551 - Experienced Endeavour(构造矩阵-水题)
题意:求一列序列的经过r次变化后的新序列,这些变化都是旧序列的某些已给位置的和产生新的项思路:好水,直接构造01矩阵//Accepted 45 ms C++ 4.8.2 1442#include#include#include#includeusing namespace std;const int mod= 1000;int num[55];int res[55];原创 2015-04-10 15:56:19 · 958 阅读 · 0 评论 -
HDU 4565 So Easy!(构造共轭式+矩阵)(好题)
题意:已给a,b是正数, 015, (a-1)22, 0 31.求:那是向上取整符号思路:注意到(a-1)22而且(a+sqrt(b))^n与其共轭式的和显然为整数,又注意到它的共轭式(a-sqrt(b))^n小于1(由于a,b大小关系)所以即求Sn=(a+sqrt(b))^n + (a-sqrt(b))^n再变形(易变形)递推Sn=2*aSn-1原创 2015-04-10 16:02:13 · 680 阅读 · 0 评论 -
UVA 11149-Power of Matrix (等比矩阵求和)
Problem B : Power of MatrixTime limit: 10 secondsConsider an n-by-n matrix A. We define Ak = A * A * ... * A (k times). Here, * denotes the usual matrix multiplication.You ar原创 2015-04-10 15:51:11 · 1165 阅读 · 0 评论 -
HDU 4965 Fast Matrix Calculation(利用矩阵运算性质)
题意:给出n*k的矩阵A和k*n的B,求(AB)^(n*n)结果矩阵中各元素模6 之和。(n思路:A*B的矩阵是n*n(1000*1000)的矩阵,再快速幂肯定超时,用乘法结合律A^(N*N) * B^(N*N) = A*B*A*B*A*B*A··· = A*(B*A)*(B*A)···,以B*A的6*6的矩阵再快速幂即可//62MS 1716K 1968 B C++ #inclu原创 2015-04-10 11:10:32 · 760 阅读 · 0 评论 -
HDU 4990 Reading comprehension (矩阵快速幂)
题意:给一个数列a[i]=2a[i-1](如果i是偶数) a[i]=2a[i-1]+1(如果i是奇数);求a[n]%m (1思路:明显用矩阵快速幂,可以推出通项:a[n]=2*a[n-2]+a[n-1]+1当然并不需要动脑...直接当成偶数处理就好,是奇数的话单独再递推一项就好。也就是a[i]=4a[i-2]+2//4990 0MS 1620K 1196 B C++ #include原创 2015-04-10 10:07:36 · 903 阅读 · 0 评论 -
HDU 5015 233 Matrix (构造矩阵)
题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n数据范围:n,m(n ≤ 10,m ≤ 109). 思路:因为m ≤ 109显然是要找到列与列的递推关系,用logn幂加速。从递推式可以得知:a[i][j]可以由a[1...i][j-1] 递推得到,所以构造递推矩阵实现a[1...1][j-1]向a[1...1][j]的转移‘即可#原创 2015-04-10 09:59:23 · 553 阅读 · 0 评论 -
HDU 2243 考研路茫茫——单词情结(自动机DP+矩阵)
考研路茫茫——单词情结Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3991 Accepted Submission(s): 1165Problem Description背单词,始终是复习英语的重要环节。在原创 2015-03-08 20:42:43 · 919 阅读 · 0 评论 -
POJ 2778 DNA Sequence(AC自动机确定DFA转移图+矩阵快速幂)
这道题极好的展示了AC自动机在构造转移图DFA上的应用DFA转移图就是展示状态的转移过程的图,DFA图构造出来后就可以用DP求出任何DNA长度下,任何状态的个数本题用自动机求出DFA矩阵,那么有| dp[n][0] dp[n][1] ... dp[n][m] |=|dp[1][0] dp[1][1] ... dp[1][m] | * DFA^(n-1) (m指状态总数) DP原创 2015-03-07 16:17:51 · 1003 阅读 · 0 评论 -
POJ 3070 Fibonacci (初学矩阵快速幂)
按往常一样,记下一些好的资料:http://www.matrix67.com/blog/archives/276 这是矩阵乘法10个经典的题目,其中最后一题的最后一段在该文的评论中给出。矩阵乘法满足结合律保证了矩阵快速幂的正确性。目前的代码风格是学了九野的模版风格(http://blog.csdn.net/acmmmm/article/details/10041141)#d原创 2015-02-27 12:41:52 · 1064 阅读 · 0 评论 -
POJ 3150 Cellular Automaton(矩阵快速幂+特殊矩阵的性质)
题目的意思开始没看懂,看了别人的博客的翻译题目大意:一个元胞中包含若干细胞,每个细胞都有初始value值,题目定义了一个细胞距离,细胞i、j之间的距离d=min(|i-j|,n-|i-j|),称与细胞i距离不超过d的所有细胞(包括该细胞本身)的集合为细胞i的d-environment,经过一个d-steps变换后,元胞中每一个细胞的值变为该细胞d-environment内所有细胞val原创 2015-02-27 15:35:22 · 813 阅读 · 0 评论 -
POJ 3233 - Matrix Power Series(等比矩阵求和)
题意:矩阵求和思路:用二分幂解决,和等比数列求和的二分方法一样等比数列求和法(摘自http://blog.csdn.net/acdreamers/article/details/7851144 ACdreams)有效地求表达式的值:(1)当时,(2)当时,那么有 (3)当时,那么有 当n是奇数时作者做了一步优化,隔离出原创 2015-04-07 22:28:54 · 1910 阅读 · 0 评论