为你介绍Python当中基础的函数

这篇博客主要介绍了Python的基础函数,包括读取CSV文件、数学运算、绘图、特征工程以及常用的numpy和sklearn操作,如画散点图、多项式特征处理、误差计算以及回归分析。适合初学者和准备面试者了解Python基础技能。
摘要由CSDN通过智能技术生成

1读取CSV文件

import pandas as pd
df = pd.read_csv('course-5-boston.csv')
df.head()  #读取前五行
df.tail()  #读取后五行
df.describe()  #显示对应数据的平均值,中位数等信息

 # df对数据分为训练集和测试集:
split_num = int(len(df)*0.7)
特征x, features:train_x=features[:split_num], test_x = features[split_num:] 
标签y,label:train_y=label[:split_num], test_y=label[split_num:]

from sklearn.linear_model import **LinearRegression** 
model = LinearRegression() # 建立模型
model.fit(train_x, train_y) # 训练模型
model.coef_, model.intercept_ # 输出训练后的模型参数和截距项
preds = model.predict(test_x) # 输入测试集特征进行预测

features = df[['公交','写字楼','医院', '商场', '地铁', '学校', '建造时间', '楼层', '面积']]
target = df['每平米价格']
pd.concat([features, target], axis=1)  #对两个进行列拼接,组成一个新的csv格式的文件

2在区间[start, end]均匀取num个点

np.linespace(start, end, num)

3画二维坐标的散点图

plt.scatter(x, y)

4画散点图,但是点有类用于画分类的散点图

plt.scatter(x, y, c=z, cmap=‘bwr’)

5通过 PolynomialFeatures

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值