Time will tell.
之前一直从事服务端的测试工作,虽然以前做过几年时间,但融合了自动化测试
和功能测试
以及单元测试
。精力有限,接触到的白盒测试
比较浅。近期项目进入了调整期,有时间整理下对于项目测试中的代码测试一些感触。 顺便对未来的工作方向和计划做好准备工作。
那么,到底白盒测试
和功能测试
以及模块测试
、自动化测试
之间应该如何进行抉择,如何进行搭配、互补,来达到项目高质,高效的目的呢? 站在整个项目的角度,从以下几个维度对白盒测试
进行了一些思考:
1、什么项目可以考虑白盒测试
- 大项目,周期比较长(因为需要前期介入review RD代码)
- 功能测试不放心的项目,接口比较明确,重要函数做的修改
- 对整个项目了解较清晰,时间要求较低
- 新项目
- 逻辑较复杂的模块
- 通用类的
- 异步的、多线程的程序
- 函数用到的外部数据较多的不适合做,构造起来非常复杂,如大量的信令、词典等
2、如何结合白盒测试和其它测试方法
首先,需要根据项目特点,比如项目周期
,项目难度等来确定测试方法。
然后,如果满足做白盒测试
的条件,则需要先确定白盒测试处于项目测试中的什么阶段,如果是迭代或优化类的项目,建议进行分层测试,重点对更新的代码进行白盒测试
,其它的进行传统的自动化
或手工回归测试
。
如果是周期比较长的全新项目,可以考虑在RD编码阶段介入,了解接口和底层内部函数构造,为白盒测试
做准备。
为了避免白盒测试
和功能测试
的交叉工作量,可以底层库用白盒测试,上层功能测试用功能测试,在功能测试上就不再关注底层的测试,可借助分层测试思想。
3、如何降低白盒测试成本
不管从技术还是从周期上,白盒测试
成本比较大,所以站在高效和简易的基础上,尽量借助工具来尽量减少白盒测试
范围,比如可以借助:
- 手工测试 + 代码覆盖率测试来覆盖一部分代码
- C代码可以用gdb(其它语言也有)来构造一些比较难引入的上层变量,再结合代码覆盖率来做
- 单测工具,比如cppunit,gtest等来做接口测试
- 其它
我们之前的做法是将模块测试做成自动化CASE,然后新版本来后,进行自动化测试回归,并结合代码覆盖率来出一份覆盖报告(从分支和代码行两个维度),然后再对新升级的代码进行review,并拓展用例来覆盖,如果功能测试实在无法模拟,会采取gtest,最后仍不好模拟会采用gdb挂载的方式
4、 白盒测试收益和风险
- 功能测试无法深入到底层的测试上,白盒测试可以
- 投入成本较大,收益较小
- 通过白盒测试只能发现函数级的错误,较难发现函数接口之间的错误
- 时间会增加,覆盖率会增加
- 可促进rd的单元测试做的更充分
- 短期收益不明显,长远会有收益
5、白盒测试方法
- 最基层的函数做详细的测试(倾向于功能),策略较复杂的做详细测试(倾向于逻辑),通过自己写5.2. 程序去调用被测函数,外层的通过GDB的方式去测试
- 自己写驱动去调用被测程序或构造上下层来验证被测程序
- 通过程序包装被测程序,通过多线程的方式去实现多个动作之间的交互
- cppunit去做,但调用关系较复杂的测试很难去实现,支持case的管理、验证
- 可借助gtest去实现,扩展为和c++test类似的功能
以上内容就分享到这里,学习犹如逆水行舟,不进则退。
关注工纵号【白码会说】,有不定期活动软件测试自动化书籍抽奖小福利。及学习资
源和面试资源。
推荐一个Python自动化资料学习扣裙:175317069。有视频学习资源分享,也有行业
技术人分析解答。