逻辑回归算法

本文详细介绍了逻辑回归算法在分类问题中的应用,包括为何需要逻辑回归,Sigmoid函数作为预测模型的原因,以及如何通过成本函数优化模型。讨论了线性和非线性的判定边界,并介绍了梯度下降算法在逻辑回归中的优化方法,最后提到了多元分类问题的解决策略。
摘要由CSDN通过智能技术生成

分类问题及其表现形式

为什么需要逻辑回归算法

比如要对一个图片进行分类,判断图片里是否包含汽车。包含汽车的预测值为 1 。不包含汽车的预测值为 0 。这种分类问题的值是离散的,如果用 linear regresstion 来作为分类问题的预测函数是不合理的。因为预测出来的数值可能远小于 0 或远大于 1。我们需要找出一个预测函数模型,使其值的输出在 [0, 1] 之间。然后我们选择一个基准值,比如 0.5 ,如果预测值算出来大于 0.5 就认为其预测值为 1,反之则其预测值为 0.

逻辑回归算法的预测函数

我们选择 g(z)=11+ez 来作为我们的预测函数。这个函数称为 Sigmoid Function 。它的图形如下:

contacts_structure

从图中可以看出来,当 z>0 时, g(z)>0.5 。当 z 越来越大时, g(z) 接无限接近于 1。当 z<0 时, g(z)<0.5 。当 z 越来越小时, g(z) 接无限接近于 0。这正是我们想要的针对二元分类算法的预测函数。

结合我们的线性回归函数的预测函数 hθ(x)=θTx ,则我们的逻辑回归模型的预测函数如下:

hθ(x)=g(θTx)=11+eθTx

解读逻辑回归预测函数的输出值

hθ(x) 表示针对输入值 x 以及参数 θ 的前提条件下, y=1 的概率。用概率论的公式可以写成:

hθ(x)=P(y=1|x;θ)

上面的概率公式可以读成:在输入 x 及参数 θ 条件下 y=1 的概率。由概率论的知识可以推导出,

P(y=1|x;θ)+P(y=0|x;θ)=1

判定边界 Decision Boundary

从逻辑回归公式说起

逻辑回归预测函数由下面两个公式给出的:

hθ(x)=g(θTx)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值