常用的微分运算法则

本文探讨了微分运算法则在机器学习中的重要性,特别是在计算Sigmoid Function的微分中。文章介绍了基础函数和组合函数的微分规则,包括幂函数、指数函数、对数函数、三角函数、反三角函数的微分,以及常数法则、加法法则、乘法法则、除法法则和链式法则。通过三种不同方法详细展示了如何求解Sigmoid Function的导数,证明了微分在理解算法背后的数学原理上的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习涉及到较多的数学知识,在工程应用领域,这些数学知识不是必要的,其实很多算法都是数值运算专家写好了的。然而知其然知其所以然,了解这些数学公式的来龙去脉是帮助理解算法的关键。本文直接给出常用的微分运算法则,并运用这些法则来计算分类回归算法 (Logistic Regression) 预测模型 Sigmoid Function 的微分公式。

基础函数的微分运算法则

  • 幂函数法则
    ddxxn=nxn1
  • 指数函数法则
    ddxex=ex

    ddxax=ln(a)ax
  • 对数函数法则
    ddxln(x)=1x

    ddxloga(x)=1xln(a)
  • 三角函数法则
    ddxsin(x)=cos(x)

    ddxcos(x)=sin(x)

    ddxtan(x)=sin2(x)=1cos2(x)=1+tan2(x)
  • 反三角函数法则
    ddxarcsin(x)=11x2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值