学习笔记
文章平均质量分 61
面包鲫鱼
这个作者很懒,什么都没留下…
展开
-
【PyTorch学习笔记】自用 零基础详细标注-1.数据类
本学习笔记是根据b站up小土堆讲解内容进行的整理区分pytorch加载数据类的**dataset和dataloader。**dataloader部分是在笔记5之后增加的内容,可能涉及到部分后面的知识。这几天陆续更新一下笔记。原创 2023-09-17 21:52:56 · 96 阅读 · 1 评论 -
【PyTorch学习笔记】自用 零基础详细标注-5.神经网络基本骨架nn.Modeule
forward:前向传播。文档中描述,定义计算过程,应当在每个子类中都进行重写。给出一个框架,往其中添加东西即可建立一个卷积网络。本节主要了解的是这个框架。最常用模块:Module,对所有神经网络提供的基本骨架,所有的神经网络都要继承这个类。原创 2023-09-18 08:53:15 · 43 阅读 · 0 评论 -
【PyTorch学习笔记】自用 零基础-8.非线性激活
为神经网络中引入一些非线性特征。最常见的是nn.ReLu(),nn.Sigmoid()原创 2023-09-19 21:28:30 · 55 阅读 · 0 评论 -
【PyTorch学习笔记】自用 零基础详细标注-3.transforms使用(单图)
torchvision中的transforms,很常用,用于图片的变换。本节通过处理单张图片介绍transforms的基本使用,下节将transforms与数据集结合。原创 2023-09-18 08:49:08 · 110 阅读 · 0 评论 -
【PyTorch学习笔记】自用 零基础详细标注-6.卷积层 Convolution Layers
nn.Conv1d:一维卷积;nn.Conv2d:二维;nn.Conv3d:三维。以conv2d作为例子。原创 2023-09-18 08:57:31 · 66 阅读 · 0 评论 -
【PyTorch学习笔记】自用 零基础详细标注-2.Tensorboard使用
可以用它生成loss变化、展示transform结果。在pytorch1.1后可以在torch中使用。在探究输出时很有效,比如训练数据集时,可以直观看见中间各步骤的处理结果。安装tensorboard:pip install tensorboard。原创 2023-09-18 08:45:49 · 90 阅读 · 0 评论 -
【PyTorch学习笔记】自用 零基础-7.池化层 Pooling layers
MaxPool最大池化,有时候也被称为下采样;MaxUnpool,上采样;平均池化……原创 2023-09-18 08:58:35 · 94 阅读 · 0 评论 -
【PyTorch学习笔记】自用 零基础-9.线性层及其它层
使用正则化可以加快神经网络训练速度。用得比较少,稍作了解即可。原创 2023-09-19 21:32:26 · 93 阅读 · 0 评论 -
【PyTorch学习笔记】自用 零基础详细标注-4.torchvision数据集
torchvision包含许多数据集,以及一些训练好的model可用。在官网可查看。原创 2023-09-18 08:50:23 · 42 阅读 · 0 评论 -
[个人]哈希表学习+map笔记
小白了解了一下哈希表,这位大佬讲得很生动很好理解→原贴地址以及C++的map函数使用整理,参考了许多不同文章,整理了常用的部分。主要是阅读原贴链接的笔记。一.理论基础与理解1.哈希表是什么又称散列表。哈希表本质上是数组,数组内的元素通过映射函数产生相应的标号,能够直接通过标号指向需要的元素,更方便地查找元素。百度解释:散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问原创 2021-10-24 17:18:47 · 2298 阅读 · 0 评论