向量的点乘(内积、点积)


求向量的点乘即求两个维数相同的变量,求他们的点积就是将对应坐标相乘,然后将结果相加。
点积

几何意义

向量v和w的点乘可以理解为w朝着过原点和v终点的直线上投影,再将投影的长度乘以v的长度。
几何意义
若w投影的方向与v的反向相反,则点积为负值。
垂直时点积则为0。

点积与顺序无关

两个向量的点积可以任意交换前后顺序,得到的结果不变。
在几何上的即交换投影的方式,得到的结果不变。
交换投影

为什么点积与顺序无关?

假设v和w是空间中长度相同的两个向量,那么根据对称性,它们互相投影的长度和另一个向量的长度相乘的结果互为镜像。
对称
如果将其中一个缩放若干倍,则破坏了其对称性,但其实也就是缩放倍数的问题,因此向量点积与顺序无关。

缩放

本文为视频博主3Blue1Brown的线代视频笔记,链接如下。
[1]: https://www.bilibili.com/video/BV1ys411472E?p=10

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值