向量的点乘(内积、点积)
求向量的点乘即求两个维数相同的变量,求他们的点积就是将对应坐标相乘,然后将结果相加。
几何意义
向量v和w的点乘可以理解为w朝着过原点和v终点的直线上投影,再将投影的长度乘以v的长度。
若w投影的方向与v的反向相反,则点积为负值。
垂直时点积则为0。
点积与顺序无关
两个向量的点积可以任意交换前后顺序,得到的结果不变。
在几何上的即交换投影的方式,得到的结果不变。
为什么点积与顺序无关?
假设v和w是空间中长度相同的两个向量,那么根据对称性,它们互相投影的长度和另一个向量的长度相乘的结果互为镜像。
如果将其中一个缩放若干倍,则破坏了其对称性,但其实也就是缩放倍数的问题,因此向量点积与顺序无关。
本文为视频博主3Blue1Brown的线代视频笔记,链接如下。
[1]: https://www.bilibili.com/video/BV1ys411472E?p=10