BPNN
BPNN被认为是最常用的预测方法,BPNN模型的一般结构如下图所示,它由输入层、隐层和输出层三层组成,其中隐层在输入层和输出层之间传递着重要的信息。
BPNN总是由一个或多个隐藏层组成,从而允许网络对复杂功能进行建模。它主要由两个过程组成:正向信息传播和误差反向传播。这三层之间的数学关系可以表示如下:
输入层到隐层:
隐层到输出层:
其中:ym和yj分别表示输入层和隐藏层的输入;yt表示点t的预测值;μjm和λoj表示输出层和隐藏层的网络权重;μj和λo是隐藏层和输出层的阈值;n和I是输入层和隐藏层的节点数;fI和fo分别表示隐藏层和输出层的激活函数。在大多数情况下,通常使用逻辑函数和双曲线函数作为隐含层激活函数fI,而经常使用线性函数作为输出层激活函数fo。
前向传播
先讲前向传播,输入a[l-1],输出是a[l],缓存为z[l];