反向传播神经网络(Back propagation neural network ,BPNN)

本文详细介绍了BP神经网络的基本结构,包括输入、隐藏和输出层,重点阐述了前向传播的过程,从输入到隐藏层再到输出层的数学关系,并展示了向量化实现。同时,反向传播算法的步骤及其在误差调整中的关键作用也被深入剖析。适合理解神经网络预测方法的读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


BPNN

BPNN被认为是最常用的预测方法,BPNN模型的一般结构如下图所示,它由输入层、隐层和输出层三层组成,其中隐层在输入层和输出层之间传递着重要的信息。
在这里插入图片描述
BPNN总是由一个或多个隐藏层组成,从而允许网络对复杂功能进行建模。它主要由两个过程组成:正向信息传播和误差反向传播。这三层之间的数学关系可以表示如下:
输入层到隐层:
在这里插入图片描述
隐层到输出层:
在这里插入图片描述
其中:ym和yj分别表示输入层和隐藏层的输入;yt表示点t的预测值;μjm和λoj表示输出层和隐藏层的网络权重;μj和λo是隐藏层和输出层的阈值;n和I是输入层和隐藏层的节点数;fI和fo分别表示隐藏层和输出层的激活函数。在大多数情况下,通常使用逻辑函数和双曲线函数作为隐含层激活函数fI,而经常使用线性函数作为输出层激活函数fo。

前向传播

先讲前向传播,输入a[l-1],输出是a[l],缓存为z[l];

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值