我们称一个数 X 为好数, 如果它的每位数字逐个地被旋转 180 度后,我们仍可以得到一个有效的,且和 X 不同的数。要求每位数字都要被旋转。
如果一个数的每位数字被旋转以后仍然还是一个数字, 则这个数是有效的。0, 1, 和 8 被旋转后仍然是它们自己;2 和 5 可以互相旋转成对方(在这种情况下,它们以不同的方向旋转,换句话说,2 和 5 互为镜像);6 和 9 同理,除了这些以外其他的数字旋转以后都不再是有效的数字。
现在我们有一个正整数 N, 计算从 1 到 N 中有多少个数 X 是好数?
示例:
输入: 10
输出: 4
解释:
在[1, 10]中有四个好数: 2, 5, 6, 9。
注意 1 和 10 不是好数, 因为他们在旋转之后不变。
提示:
N 的取值范围是 [1, 10000]。
java代码:
class Solution {
/**
* 思路
*
* 遍历从 1 到 N 的每个数字 X,判断 X 是否为好数。
*
* 如果 X 中存在 3、4、7 这样的无效数字,则 X 不是一个好数。
*
* 如果 X 中不存在 2、5、6、9 这样的旋转后会变成不同的数字,则 X 不是一个好数。
*
* 否则,X 可以旋转成一个不同的有效数字。
*
* 算法
*
* 判断数字 X 是否为好数,有两种实现方式。最直观的一种方法是把 X 转换成字符串然后解析;另一种方法是递归检查 X 的最后一位数字。
*
*
*/
public int rotatedDigits(int N) {
int ans = 0;
for (int i = 1; i <= N; i++) {
if (good(i, false)) {
ans++;
}
}
return ans;
}
public boolean good(int n, boolean flag) {
if (n == 0) {
return flag;
}
int d = n % 10;
if (d == 3 || d == 4 || d == 7) {
return false;
}
if (d == 0 || d == 1 || d == 8) {
return good(n / 10, flag);
}
return good(n / 10, true);
}
}