iKun

迎风而立的狮子

SpringBoot配置多CacheManager

SpringCache配置多CacheManager 背景 ​ Spring为了减少数据的执行次数(重点在数据库查询方面), 在其内部使用aspectJ技术,为执行操作的结果集做了一层缓存的抽象。这极大的提升了应用程序的性能。由于其切面注入的特性,所以不会对我们的程序造成任何的影响。对于一些实时...

2019-05-12 21:18:34

阅读数 49

评论数 0

Spring Security OAuth2.0实践

Spring Security OAuth2.0实践 OAuth2.0 简介 OAuth2.0 是一套授权体系的开放标准,注意:OAuth2.0 并不是一个框架,而是一套制定的授权标准,内部定义了四大组件: 客户应用(Client Application):典型代表为:Web端,或者移动端 资源...

2019-05-05 23:51:44

阅读数 11

评论数 0

MyBatis解析

MyBatis解析 简介 ​ Mybatis 是一款优秀的持久层框架,它支持定制化 SQL、存储过程以及高级映射。MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解来配置和映射原生类型、接口和 Java 的 POJO(Pl...

2019-04-28 00:10:26

阅读数 52

评论数 1

主要记录下使用Git出现的问题

主要记录下使用Git出现的问题 1. Clone||Pull远端仓库失败或中断 设置git的http.postBuffer属性 git config --global http.postBuffer 524288000 更改clone方式为ssh 终极大招。。。手动下载 2. clon...

2019-04-24 18:21:58

阅读数 13

评论数 0

mac上安装expect实现自动登陆

必备软件 tcl expect 下载软件的地址建议放在/usr/local目录下。 1. 配置tcl 解压&&编译 cd tcl8.4.20 cd unix sudo ./configure --prefix=/usr/local/tcl --ena...

2019-04-24 18:20:56

阅读数 13

评论数 0

SpringBoot配置拦截器导致swagger失效

问题背景: Springboot 启用拦截器后,Swagger无法访问 原因 拦截器拦截了所有的请求,导致swagger也被拦截,当在进行鉴权的的时候,可能需要传入一些特定的参数,或者请求头信息,这样我们就无法正常通过swagger了。 解决 配置静态资源处理器,以及将swagger的访问路...

2019-04-24 18:18:56

阅读数 25

评论数 0

CentOS 安装 Docker

准备工作 系统要求 Docker CE 支持 64 位版本 CentOS 7,并且要求内核版本不低于 3.10。 CentOS 7 满足最低内核的要求,但由于内核版本比较低,部分功能(如overlay2 存储层驱动)无法使用,并且部分功能可能不太稳定。 卸载旧版本 旧版本的Docker称为 d...

2019-04-22 22:22:20

阅读数 11

评论数 0

jenkins+Warnings Next Generation Plugin构建代码自动化检测

背景 现在大多数企业,都会选择使用自动化的方式去构建代码.UT,打包,部署等等,一条龙服务,为了产出优质的代码,代码检测当然是必不可少的.这个代码检测当然不是由我们手动检查,当然是由工具帮我们自动完成,下面就是我们要介绍的重点咯,jenkins+Warnings Next Generation ...

2019-04-17 22:27:06

阅读数 51

评论数 0

git下使用checkstyle构建代码风格检查

背景 出于团队协作开发的效率考虑,决定引入checksytle来规范代码风格.统一了风格,办起事来自然干净利落咯. 那引入之后有什么优点呢: 统一了代码风格,这样看起代码来不会觉得头疼. 能够矫正我们的撸代码规范,就跟那个坐姿优点类似... 能够检测代码垃圾,让代码编译更快,出问题的可能性大...

2019-04-16 23:06:31

阅读数 16

评论数 0

单例设计模式

单例设计模式 简介 ​ 单例模式是设计模式中最简单的形式之一。 单例设计模式通常来讲,就是确保一个类在一个应用程序中只能存在一个实例,并提供一个访问它的全局访问点。一般我们会提供一个静态方法来供全局访问。 应用场景 各种资源池类(pool)对象。如:线程池,数据库连接池,HTTP连接池 缓存...

2018-12-27 19:30:09

阅读数 34

评论数 0

kettle的简单操作

本文将记录下如何简单的操作kettle,针对CVS以及Excel文件进行入库操作。 CVS入库操作 创建数据库表 第一步: 创建数据库 kettle 第二步: 建表 DLL语句如下: CREATE TABLE `csv_test` ( `id` int(11) NOT NULL, `nam...

2018-12-04 14:28:17

阅读数 54

评论数 0

Kettle 9.0 源码编译

Kettle源码包编译指南 本次构建基于Kettle源码的9.0快照版本 环境准备 maven 3+ JDK 1.8 下载settings.xml文件,存放于.m2文件下 源码下载 源码下载地址:https://github.com/pentaho/pentaho-kettle.git 开始构...

2018-12-04 14:18:33

阅读数 320

评论数 10

【Leetcode】583.Delete Operation for Two Strings

Delete Operation for Two Strings Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 the same, where i...

2018-11-20 21:09:36

阅读数 35

评论数 0

【Leetcode】880. Decoded String at Index

Decoded String at Index An encoded string S is given. To find and write the decoded string to a tape, the encoded string is read one character at ...

2018-11-19 22:07:35

阅读数 154

评论数 0

【Leetcode】376. Wiggle Subsequence

Wiggle Subsequence A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between posit...

2018-11-16 17:30:00

阅读数 36

评论数 0

快速幂

快速幂 快速幂,实际上是快速幂取模的缩写。简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。 一般运用到的公式主要如下: ab%n=((a%n)(b%n))%n Leetcode 372. 超级次...

2018-11-13 17:43:35

阅读数 55

评论数 0

JAVA桥接方法

桥接方法 随着JDK的发展,到1.5的时候,引入了泛型(generics)的概念。由于集合类的广泛使用,不得不加上一些安全考虑,因为传统的集合是可以添加任意的类型的数据,我们在取数据的时候,还需要进行手动强制转型,但是我们并不知道我们取出的数据是什么类型的,比如: 一个List集合,先加入Stri...

2018-11-13 17:42:59

阅读数 61

评论数 0

【LeetCode】373. Find K Pairs with Smallest Sums

373. Find K Pairs with Smallest Sums You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k. Define a pair (u,v)...

2018-11-13 17:42:09

阅读数 85

评论数 0

【LeetCode】284.Peeking Iterator

284.Peeking Iterator 题目描述: Given an Iterator class interface with methods: next() and hasNext(), design and implement a PeekingIterator that support ...

2018-11-08 14:23:39

阅读数 20

评论数 0

【LeetCode】368. Largest Divisible Subset

Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or...

2018-11-07 22:31:28

阅读数 17

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭