【教3妹学编程-算法题】美丽塔 II

文章讲述了如何使用单调栈算法解决给定最大高度数组构造美丽塔的问题,即找到满足特定条件(1<=heights[i]<=maxHeights[i]且为山脉数组)的塔方案中,高度和的最大值。作者提供了Java代码实现思路。
摘要由CSDN通过智能技术生成

插: 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。
坚持不懈,越努力越幸运,大家一起学习鸭~~~

瑟瑟发抖

3妹:好冷啊, 冻得瑟瑟发抖啦
2哥 : 又一波寒潮来袭, 外面风吹的呼呼的。
3妹:今天还有雨,2哥上班记得带伞。
2哥 : 好的
3妹:哼,不喜欢冬天,也不喜欢下雨天,要是我会咒语,一直停留在春天就好啦,四季如春。
2哥:想得美, 接受现实吧。四季如春不可能了,不过本周可以在一周内感受春夏秋冬。还有,再冷的天也别忘记刷题啊。
3妹:好的,我要上班去了,你发我微信上,我通勤路上看一下~

吃瓜

题目:

给你一个长度为 n 下标从 0 开始的整数数组 maxHeights 。

你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i ,高度为 heights[i] 。

如果以下条件满足,我们称这些塔是 美丽 的:

1 <= heights[i] <= maxHeights[i]
heights 是一个 山脉 数组。
如果存在下标 i 满足以下条件,那么我们称数组 heights 是一个 山脉 数组:

对于所有 0 < j <= i ,都有 heights[j - 1] <= heights[j]
对于所有 i <= k < n - 1 ,都有 heights[k + 1] <= heights[k]
请你返回满足 美丽塔 要求的方案中,高度和的最大值 。

示例 1:

输入:maxHeights = [5,3,4,1,1]
输出:13
解释:和最大的美丽塔方案为 heights = [5,3,3,1,1] ,这是一个美丽塔方案,因为:

  • 1 <= heights[i] <= maxHeights[i]
  • heights 是个山脉数组,峰值在 i = 0 处。
    13 是所有美丽塔方案中的最大高度和。
    示例 2:

输入:maxHeights = [6,5,3,9,2,7]
输出:22
解释: 和最大的美丽塔方案为 heights = [3,3,3,9,2,2] ,这是一个美丽塔方案,因为:

  • 1 <= heights[i] <= maxHeights[i]
  • heights 是个山脉数组,峰值在 i = 3 处。
    22 是所有美丽塔方案中的最大高度和。
    示例 3:

输入:maxHeights = [3,2,5,5,2,3]
输出:18
解释:和最大的美丽塔方案为 heights = [2,2,5,5,2,2] ,这是一个美丽塔方案,因为:

  • 1 <= heights[i] <= maxHeights[i]
  • heights 是个山脉数组,最大值在 i = 2 处。
    注意,在这个方案中,i = 3 也是一个峰值。
    18 是所有美丽塔方案中的最大高度和。

提示:

1 <= n == maxHeights <= 10^5
1 <= maxHeights[i] <= 10^9

思路:

思考

单调栈,
根据题意,假设数组的长度为 n,对于山状数组 heights 定义如下:

假设 heights[i]为数组中的最大值,则 i 左边的值均小于等于 heights[i],i 右边的值均小于等于 heights[i];
i 的左侧,从 0 开始到 i 为非递减关系,即 j∈[1,i]时,均满足 heights[j−1]≤heights[j];
i 的右侧,从 i 开始到 n−1为非递增关系,即 j∈[i,n−2]时,均满足 heights[j+1]≤heights[j];

java代码:

class Solution {
    public long maximumSumOfHeights(List<Integer> maxHeights) {
        int[] a = maxHeights.stream().mapToInt(i -> i).toArray();
        int n = a.length;
        long[] suf = new long[n + 1];
        var st = new ArrayDeque<Integer>();
        st.push(n); // 哨兵
        long sum = 0;
        for (int i = n - 1; i >= 0; i--) {
            int x = a[i];
            while (st.size() > 1 && x <= a[st.peek()]) {
                int j = st.pop();
                sum -= (long) a[j] * (st.peek() - j); // 撤销之前加到 sum 中的
            }
            sum += (long) x * (st.peek() - i); // 从 i 到 st.peek()-1 都是 x
            suf[i] = sum;
            st.push(i);
        }

        long ans = sum;
        st.clear();
        st.push(-1); // 哨兵
        long pre = 0;
        for (int i = 0; i < n; i++) {
            int x = a[i];
            while (st.size() > 1 && x <= a[st.peek()]) {
                int j = st.pop();
                pre -= (long) a[j] * (j - st.peek()); // 撤销之前加到 pre 中的
            }
            pre += (long) x * (i - st.peek()); // 从 st.peek()+1 到 i 都是 x
            ans = Math.max(ans, pre + suf[i + 1]);
            st.push(i);
        }
        return ans;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值