TonyY是一个喜欢到处浪的男人,他的梦想是带着兰兰姐姐浪遍天朝的各个角落,不过在此之前,他需要做好规划。
现在他的手上有一份天朝地图,上面有n个城市,m条交通路径,每条交通路径都是单行道。他已经预先规划好了一些点作为旅游的起点和终点,他想选择其中一个起点和一个终点,并找出从起点到终点的一条路线亲身体验浪的过程。但是他时间有限,所以想选择耗时最小的,你能告诉他最小的耗时是多少吗?
包含多组测试数据。
输入第一行包括两个整数n和m,表示有n个地点,m条可行路径。点的编号为1 - n。
接下来m行每行包括三个整数i, j, cost,表示从地点i到地点j需要耗时cost。
接下来一行第一个数为S,表示可能的起点数,之后S个数,表示可能的起点。
接下来一行第一个数为E,表示可能的终点数,之后E个数,表示可能的终点。
0<S, E≤n≤100000,0<m≤100000,0<cost≤100。
输出他需要的最短耗时。
4 4 1 3 1 1 4 2 2 3 3 2 4 4 2 1 2 2 3 4
1
以每个起点进行一遍spfa,然后找出到终点距离最小的,然后把所有的起点和终点情况枚举完,找出最小值就可以了
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define inf 0x3f3f3f3f
#define N 101000
#define ll long long
using namespace std;
int n,m,a,b,c;
int head[N],len,vis[N],dis[N],s[N],e[N];
struct node
{
int u,v,w,next;
} G[N];
void add_edge(int u,int v,int w)
{
G[len].v=v;
G[len].w=w;
G[len].next=head[u];
head[u]=len++;
}
void spfa(int st)
{
for(int i=1; i<=n; i++)
{
dis[i]=inf;
vis[i]=0;
}
dis[st]=0;
vis[st]=1;
queue<int>q;
q.push(st);
while(!q.empty())
{
st=q.front();
q.pop();
//printf("%d ",st);
for(int i=head[st]; i!=-1; i=G[i].next)
{
int v=G[i].v,w=G[i].w;
//printf("%d ",v);
if(dis[v]>dis[st]+w)
{
dis[v]=dis[st]+w;
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
int minn=inf;
len=1;
memset(head,-1,sizeof(head));
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
add_edge(a,b,c);
}
int x,y;
scanf("%d",&x);
for(int i=1; i<=x; i++)
scanf("%d",&s[i]);
scanf("%d",&y);
for(int i=1; i<=y; i++)
scanf("%d",&e[i]);
for(int i=1; i<=x; i++)
{
spfa(s[i]);
for(int j=1; j<=y; j++)
minn=min(minn,dis[e[j]]);
}
printf("%d\n",minn);
}
return 0;
}
多源最短路问题的重点: 将所有的起点全部通过一个自己添加的初始点(比如 ‘0’点) 且0点到所有的起点的距离全部为0,然后通过一遍SPFA求出从新起点到所有点的最短路,所有点的最短距离全部找到了,最后只需要做一遍比较就好了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
struct node
{
int id;
int wi;
} h;
int ed;
int dist[100100];//储存从起始点到每个点的距离
int vis[100100];//访问变量
int n,m,s,e;
vector<node>v[200100];
void spfa()
{
memset(vis,0,sizeof(vis));
for(int i=0; i<=n+1; i++) dist[i]=inf;//初始距离数组为无穷大
dist[0]=0;
queue<int>q;
vis[0]=1;
q.push(0);
while(!q.empty())
{
int x=q.front();//vis[x]=0;这个最好清除
q.pop();
for(int i=0; i<v[x].size(); i++)
{
int id=v[x][i].id;
int wi=v[x][i].wi;
if(dist[id]>dist[x]+wi)
{
dist[id]=dist[x]+wi;
}
if(!vis[id])
{
q.push(id);
vis[id]=1;
}
}
}
}
int main ()
{
int i;
int x,y,z;
while(~scanf("%d %d",&n,&m))
{
for(i=0; i<m; i++)
v[i].clear();
for(i=0; i<m; i++)
{
scanf("%d %d %d",&x,&y,&z);
h.id=y;
h.wi=z;
v[x].push_back(h);
}
scanf("%d",&s);
for(i=0; i<s; i++)
{
scanf("%d",&x);
h.id=x;
h.wi=0;
v[0].push_back(h);
}
spfa();
scanf("%d",&e);
int min=inf;
for(i=0; i<e; i++)
{
scanf("%d",&ed);
if(min>dist[ed])
{
min=dist[ed];
}
}
cout<<min<<endl;
}
}
新建一个点作为炒鸡原点,连入各个起点,再建一个炒鸡汇点,让各个终点连入这个汇点。
建好图之后,拿炒鸡原点作为起点,跑最短路即可。
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
struct node
{
int from;
int to;
int w;
int next;
}e[550000];
int head[150000];
int dist[150000];
int vis[150000];
int n,m,cont;
void add(int from,int to,int w)
{
e[cont].to=to;
e[cont].w=w;
e[cont].next=head[from];
head[from]=cont++;
}
void SPFA()
{
memset(vis,0,sizeof(vis));
for(int i=0;i<=n+1;i++)dist[i]=0x3f3f3f3f;
dist[0]=0;
queue<int >s;
s.push(0);
vis[0]=1;
while(!s.empty())
{
int u=s.front();
vis[u]=0;
s.pop();
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
int w=e[i].w;
if(dist[v]>dist[u]+w)
{
dist[v]=dist[u]+w;
if(vis[v]==0)
{
s.push(v);
vis[v]=1;
}
}
}
}
printf("%d\n",dist[n+1]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
cont=0;
memset(head,-1,sizeof(head));
for(int i=0;i<m;i++)
{
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
add(x,y,w);
}
int q;
scanf("%d",&q);
while(q--)
{
int x;
scanf("%d",&x);
add(0,x,0);
}
scanf("%d",&q);
while(q--)
{
int x;
scanf("%d",&x);
add(x,n+1,0);
}
SPFA();
}
return 0;
}