极大似然估计

极大似然估计是数理统计中的一种参数估计方法,通过最大化观测事件发生的概率来估计未知参数。该文从通俗理解出发,介绍了MLE的基本原理,并探讨了其与其他估计方法的合理性比较。通过引入K-L距离,展示了如何将参数估计问题转化为寻找使分布最接近真实分布的参数。文章还指出,在理想条件下,极大似然估计可能是最合理的,但在实际应用中,选择估计方法应考虑具体条件约束。
摘要由CSDN通过智能技术生成

通俗理解

极大似然估计(MLE)和矩估计是数理统计中进行参数估计常用方法.通常我们假设观测到的样本 X 1 , X 2 , … , X n X_1,X_2,\dots,X_n X1,X2,,Xn均是从一个统计模型 X ∼ F ( x ; θ ) X\sim F(x;\theta) XF(x;θ)随机抽样得到,即n个样本独立同分布,由此可以将联合密度函数写成边际分布函数的连乘形式. P ( X 1 , X 2 , … , X n ∣ θ ) = ∏ i = 1 n P ( X i ∣ θ ) P(X_1,X_2,\dots,X_n|\theta)=\prod_{i=1}^{n}P(X_i|\theta) P(X1,X2,,Xnθ)=i=1nP(Xiθ)

极大似然估计需要我们利用已知的观测对统计模型中的未知参数进行推断(此时,统计模型的分布类型是知道的,如正态分布、泊松分布等).一般情况下,人们定义MLE为:所得参数可以使观测到事件 ( X 1 , X 2 , … , X n ) (X_1,X_2,\dots,X_n) (X1,X2,,Xn)发生的概率达到最大.即 θ ^ M L E = arg ⁡ max ⁡ θ ∈ Θ P ( X 1 , X 2 , … , X n ∣ θ ) \hat{\theta}_{MLE}=\underset{\theta \in \Theta}{\arg\max}P(X_1,X_2,\dots,X_n|\theta) θ^MLE=θΘargmaxP(X1,X2,,Xnθ)

其中 Θ \Theta Θ表示参数空间.

上面的表达式是极大似然估计最根本的定义,从名称上也不难看出,似然 → \rightarrow likelihood → \rightarrow 可能性,即估计参数需要极大化观测发生的可能性.到此为止,极大似然估计的原理已经非常的清晰,但是进一步考虑一下这个问题:既然任何由样本的到的统计量都可以称为是参数 θ \theta θ的一个估计,那么极大似然估计与其他估计相比的合理性在哪里呢?或者为什么使观测发生概率达到最大的估计更好呢?

参数估计

回到最初的问题,现在已知随机变量的分布类型和一些观测样本.假设统计模型的真实参数为 θ ∗ \theta^* θ,一个最直观的想法是:估计分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值