极大似然估计详解

极大似然估计

        以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:


贝叶斯决策

        首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:


        其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

        我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

        从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

        设:

        由已知可得:

        男性和女性穿凉鞋相互独立,所以

(若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。

        由贝叶斯公式算出:


问题引出

        但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率和类条件概率(各类的总体分布

  • 788
    点赞
  • 3177
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 100
    评论
极大似然估计(Maximum Likelihood Estimation,简称MLE)是统计学中一种参数估计方法,指寻找最有可能(最大概率)解释已观察到的数据的参数值。USTC是中国科学技术大学的简称。 在USTC中,极大似然估计是统计学和概率论中的基础概念和方法之一。它被广泛应用于各个学科的研究和实践中,特别是与数据分析、模型拟合、测试假设等相关的领域。 极大似然估计的基本思想是,根据已观察到的数据,通过估计参数的取值,使得生成这些数据的概率最大化。通常需要假设数据服从某个概率分布,并且已有的观测数据是独立同分布的。 在实际应用中,极大似然估计方法有很多具体的步骤和技巧。一般来说,首先需要建立概率模型,并假设参数的取值空间。然后,利用已观测到的数据,计算参数取值下数据发生的概率,即似然函数。接下来,通过对似然函数进行最大化的优化,得到估计的参数值。最后,通过对参数的估计值进行验证和推断,对模型的有效性和可靠性进行评估。 USTC作为一所综合性、研究型、世界一流的大学,极大似然估计作为统计学中的重要概念和方法,也在该校的相关学科教学和研究中得到广泛应用。通过学习和掌握极大似然估计,USTC的学生能够在未来的研究、数据分析和决策过程中,更好地处理和利用观测到的数据,提高模型的精确性和可靠性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 100
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知行流浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值