需要注意的是自定义标记的是可以根据需要自己进行设置的,需要完整现成的可以有偿联系我
import argparse
import torch.optim as optim
import torch.nn.functional as F
import sys
from openpyxl import load_workbook
import torch
from torch.autograd import Variable
sys.path.append("../../")
from TCN.mnist_pixel.model import TCN,TCN_1,CNN,LSTM
# from bearing_model import TCN,TCN_1
from torch.utils.data import DataLoader,Dataset
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
########################
#给定训练数据和测试数据X_train,Y_train,和X_test,Y_test
data_train=DealDataset(X_train,Y_train)
# print('X_train.size()'+ str(X_train.size()))
data_test=DealDataset(X_test,Y_test)
trainloader = DataLoader(data_train,batch_size=batch_size,shuffle=True)
testloader=DataLoader(data_test,batch_size=batch_size,shuffle=True)
kernel_size = #自定义 # 核大小
dropout = #自定义
epochs = #自定义
steps = #自定义
model = #自定义
if args.cuda:
model.cuda()<