TE故障诊断(神经网络)

本文探讨了使用神经网络进行TE故障诊断的方法,重点在于如何利用Python和PyTorch实现这一过程。文章指出,可以自定义标记以适应特定需求,对于需要完整解决方案的读者,作者提供了有偿咨询服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要注意的是自定义标记的是可以根据需要自己进行设置的,需要完整现成的可以有偿联系我

import argparse
import torch.optim as optim
import torch.nn.functional as F
import sys
from openpyxl import load_workbook
import torch
from torch.autograd import Variable
sys.path.append("../../")
from TCN.mnist_pixel.model import TCN,TCN_1,CNN,LSTM
# from bearing_model import TCN,TCN_1
from torch.utils.data import DataLoader,Dataset
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
########################
#给定训练数据和测试数据X_train,Y_train,和X_test,Y_test
data_train=DealDataset(X_train,Y_train)
# print('X_train.size()'+ str(X_train.size()))
data_test=DealDataset(X_test,Y_test)
trainloader = DataLoader(data_train,batch_size=batch_size,shuffle=True)
testloader=DataLoader(data_test,batch_size=batch_size,shuffle=True)
kernel_size = #自定义  # 核大小
dropout = #自定义
epochs = #自定义
steps = #自定义
model = #自定义
if args.cuda:
    model.cuda()<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值