nefu488餐厅计划问题(最小费用最大流)

餐厅计划问题

一个餐厅在相继的N 天里,每天需用的餐巾数不尽相同。假设第i天需要ri块餐巾(i=1,2,…,N)。餐厅可以购买新的餐巾,每块餐巾的费用为p分;或者把旧餐巾送到快洗部,洗一块需m天,其费用为f 分;或者送到慢洗部,洗一块需n 天(n > m),其费用为s < f 分。每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。
试设计一个算法为餐厅合理地安排好N 天中餐巾使用计划,使总的花费最小。
    编程找出一个最佳餐巾使用计划.
求出最小花费。

【问题分析】

网络优化问题,用最小费用最大流解决。

【建模方法】

把每天分为二分图两个集合中的顶点Xi,Yi,建立附加源S汇T。

1、从S向每个Xi连一条容量为ri,费用为0的有向边。
2、从每个Yi向T连一条容量为ri,费用为0的有向边。
3、从S向每个Yi连一条容量为无穷大,费用为p的有向边。
4、从每个Xi向Xi+1(i+1<=N)连一条容量为无穷大,费用为0的有向边。
5、从每个Xi向Yi+m(i+m<=N)连一条容量为无穷大,费用为f的有向边。
6、从每个Xi向Yi+n(i+n<=N)连一条容量为无穷大,费用为s的有向边。

求网络最小费用最大流,费用流值就是要求的最小总花费。
【建模分析】

这个问题的主要约束条件是每天的餐巾够用,而餐巾的来源可能是最新购买,也可能是前几天送洗,今天刚刚洗好的餐巾。每天用完的餐巾可以选择送到快洗部或慢洗部,或者留到下一天再处理。

经过分析可以把每天要用的和用完的分离开处理,建模后就是二分图。二分图X集合中顶点Xi表示第i天用完的餐巾,其数量为ri,所以从S向Xi连接容量为ri的边作为限制。Y集合中每个点Yi则是第i天需要的餐巾,数量为ri,与T连接的边容量作为限制。每天用完的餐巾可以选择留到下一天(Xi->Xi+1),不需要花费,送到快洗部(Xi->Yi+m),费用为f,送到慢洗部(Xi->Yi+n),费用为s。每天需要的餐巾除了刚刚洗好的餐巾,还可能是新购买的(S->Yi),费用为p。

在网络上求出的最小费用最大流,满足了问题的约束条件(因为在这个图上最大流一定可以使与T连接的边全部满流,其他边只要有可行流就满足条件),而且还可以保证总费用最小,就是我们的优化目标。

#include<cstdio>
using namespace std;
const int mm=111111;
const int mn=2222;
const int oo=1000000000;
int node,src,dest,edge;
int reach[mm],flow[mm],cost[mm],next[mm];
int head[mn],dis[mn],q[mn],p[mn];
bool vis[mn];
inline int min(int a,int b)
{
    return a<b?a:b;
}
inline void prepare(int _node,int _src,int _dest)
{
    node=_node,src=_src,dest=_dest;
    for(int i=0;i<node;++i)head[i]=-1,vis[i]=0;
    edge=0;
}
inline void addedge(int u,int v,int f,int c)
{
    reach[edge]=v,flow[edge]=f,cost[edge]=c,next[edge]=head[u],head[u]=edge++;
    reach[edge]=u,flow[edge]=0,cost[edge]=-c,next[edge]=head[v],head[v]=edge++;
}
bool spfa()
{
    int i,u,v,l,r=0,tmp;
    for(i=0;i<node;++i)dis[i]=oo;
    dis[q[r++]=src]=0;
    p[src]=p[dest]=-1;
    for(l=0;l!=r;(++l==mn)?l=0:1)
        for(i=head[u=q[l]],vis[u]=0;i>=0;i=next[i])
            if(flow[i]&&dis[v=reach[i]]>(tmp=dis[u]+cost[i]))
            {
                dis[v]=tmp;
                p[v]=i^1;
                if(vis[v])continue;
                vis[q[r++]=v]=1;
                if(r==mn)r=0;
            }
    return p[dest]>=0;
}
int SpfaFlow()
{
    int i,delta,ans=0;
    while(spfa())
    {
        for(i=p[dest],delta=oo;i>=0;i=p[reach[i]])
            delta=min(delta,flow[i^1]);
        for(i=p[dest];i>=0;i=p[reach[i]])
            flow[i]+=delta,flow[i^1]-=delta;
        ans+=delta*dis[dest];
    }
    return ans;
}
int main()
{
    int k,p,m,f,n,s,i,use;
    while(~scanf("%d%d%d%d%d%d",&k,&p,&m,&f,&n,&s))
    {
        prepare(k+k+2,0,k+k+1);
        for(i=1;i<=k;i++)
        {
            scanf("%d",&use);
            addedge(src,i,use,0);
            addedge(i+k,dest,use,0);
            addedge(src,i+k,oo,p);
            if(i+1<=k)  addedge(i,i+1,oo,0);
            if(i+m<=k)  addedge(i,i+k+m,oo,f);
            if(i+n<=k)  addedge(i,i+k+n,oo,s);
        }
        printf("%d\n",Spfaflow());
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
棋盘问题是一个经典的回溯算法问题,其目标是在 n&times;n 的棋盘上放置 n 个皇后,使得它们互不攻击,即任意两个皇后都不能处于同一行、同一列或同一对角线。 算法设计的一般思路是使用回溯算法,从第一行开始逐行放置皇后,每次尝试在当前行的每一列放置皇后,并判断其是否合法,如果合法则递归到下一行继续放置皇后,如果不合法则回溯到上一行重新尝试放置皇后。 具体实现时可以使用一个一维数组来表示棋盘,数组下标表示行号,数组元素表示该行皇后所在的列号。在判断皇后是否合法时,只需要判断其与前面已经放置的皇后是否在同一列或同一对角线即可。 以下是一个使用 C++ 实现的棋盘问题算法: ```c++ #include <iostream> #include <vector> using namespace std; bool check(vector<int>& pos, int row, int col) { for (int i = 0; i < row; ++i) { if (pos[i] == col || abs(pos[i] - col) == abs(i - row)) { return false; } } return true; } void dfs(vector<int>& pos, int row, int n, int& count) { if (row == n) { count++; return; } for (int i = 0; i < n; ++i) { if (check(pos, row, i)) { pos[row] = i; dfs(pos, row + 1, n, count); pos[row] = -1; } } } int solve(int n) { int count = 0; vector<int> pos(n, -1); dfs(pos, 0, n, count); return count; } int main() { int n; cin >> n; cout << solve(n) << endl; return 0; } ``` 其中,check 函数用于检查当前位置是否合法,dfs 函数用于递归搜索解空间,solve 函数用于计算方案数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值