「网络流 24 题」餐巾计划 【网络流】

#2626 「网络流 24 题」餐巾计划

描述
/
一个餐厅在相继的 n 天里,每天需用的餐巾数不尽相同。假设第 i天需要 ri ​块餐巾。餐厅可以购买新的餐巾,每块餐巾的费用为 P 分;或者把旧餐巾送到快洗部,洗一块需 M 天,其费用为 F 分;或者送到慢洗部,洗一块需 N 天,其费用为 S 分(S< F )。

每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。

试设计一个算法为餐厅合理地安排好 n 天中餐巾使用计划,使总的花费最小。

输入
第 1 行有 6 个正整数 n 、P、M、F、N、S。

n 是要安排餐巾使用计划的天数, P 是每块新餐巾的费用, M 是快洗部洗一块餐巾需用天数,F 是快洗部洗一块餐巾需要的费用,N 是慢洗部洗一块餐巾需用天数,S 是慢洗部洗一块餐巾需要的费用。

接下来的 n 行是餐厅在相继的 n 天里,每天需用的餐巾数。

输出
输出餐厅在相继的 n天里使用餐巾的最小总花费。

样例输入 [复制]
3 10 2 3 3 2
5
6
7
样例输出 [复制]
145
提示
1≤n≤1000
/
思路:

其他的条件都不难操作,唯一一个麻烦的是 如何处理用完的拿给后面的(快洗和慢洗)

这里一种思路值得学习。 把每一天需要的,和用完后留下来的 用两个点分开表示

需要的: Ai 用完后剩下的: Bi
(有点像二分图)

Ai 和 T 连接 ,表示一天满足

S和 Ai连带 费用的 表示直接“买”

S 和 Bi 连 (每一天必应会产生废纸)

Bi 和 Ai+N ,Ai+M连接 表示快慢洗

小结:清晰直接的思路能减少很多不必要的讨论;

#include<bits/stdc++.h>
using namespace std;
 
const int maxn=5e3+10,maxm=1e4+10;
const int INF=2e9;
struct edge{
	int v,nxt,c,f;	
}r[maxm]; 
int head[maxn],cnt=1;
inline void _add(int u,int v,int c,int f){
	r[++cnt]=(edge){v,head[u],c,f};
	head[u]=cnt;
}
int n,P,M,F,N,S,s,t;
int dis[maxn],vis[maxn];
bool spfa(int s,int t){
	memset(vis,0,sizeof vis);
	memset(dis,0x5f,sizeof dis);
	dis[t]=0;vis[t]=1;
	deque<int> q;
	q.push_back(t);
	while(!q.empty()){
		int u=q.front();q.pop_front();vis[u]=0;
		for(int i=head[u];i;i=r[i].nxt){
			 if(r[i^1].c&&dis[u]-r[i].f<dis[r[i].v]){
			 	dis[r[i].v]=dis[u]-r[i].f;
			 	if(!vis[r[i].v]){
			 		vis[r[i].v]=1;
			 		if(!q.empty()&&dis[r[i].v]<dis[q.front()])q.push_front(r[i].v);
			 		else q.push_back(r[i].v);
				 }
			 }
			
		}
	}
	return dis[s]<0x5f5f5f5f;
}
int ans=0;

int dfs(int u,int f){
	if(u==t){
		vis[t]=1;
		return f;
	}
	int used=0,w;
	vis[u]=1;
	for(int i=head[u];i;i=r[i].nxt){
		int v=r[i].v,c=r[i].c,ff=r[i].f;
		if(!vis[v]&&c&&dis[u]-ff==dis[v]){
			w=dfs(v,min(c,f-used));
			//cerr<<u<<" "<<v<<" "<<w*ff<<endl; 
			ans+=w*ff,r[i].c-=w;
			r[i^1].c+=w;used+=w;
			if(used==f)break;
		}	
	}
	return used;
}
void get(){
	while(spfa(s,t)){
		vis[t]=1;
		while(vis[t]){
			memset(vis,0,sizeof vis);
			dfs(s,INF);
		}
	}	
}
int mov=1e3+10;
int a[maxn];
signed main(){
	s=0,t=n+mov*2;
	scanf("%d%d%d%d%d%d",&n,&P,&M,&F,&N,&S);
	for(int i=1;i<=n;++i)scanf("%d",&a[i]);
	for(int i=1;i<=n;++i){
		_add(s,i,a[i],0);_add(i,s,0,0);
		_add(i,i+1,INF,0);_add(i+1,i,0,0);
		_add(i,i+mov+M,INF,F);_add(i+mov+M,i,0,-F);
		_add(i,i+mov+N,INF,S);_add(i+mov+N,i,0,-S);
		_add(i+mov,t,a[i],0);_add(t,i+mov,0,0);
		_add(s,i+mov,a[i],P);_add(i+mov,s,0,-P);
	}
	get();
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值