3. 无重复字符的最长子串
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。
示例 1:
输入: s = “abcabcbb”
输出: 3
解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。
示例 2:
输入: s = “bbbbb”
输出: 1
解释: 因为无重复字符的最长子串是 “b”,所以其长度为 1。
示例 3:
输入: s = “pwwkew”
输出: 3
解释: 因为无重复字符的最长子串是 “wke”,所以其长度为 3。
请注意,你的答案必须是 子串 的长度,“pwke” 是一个子序列,不是子串。
- 动态规划
class Solution {
public:
int lengthOfLongestSubstring(string s) {
// 动态规划 dp[i]: 以字符s[i]为结尾的最长不重复子串“长度”
// if i - j > dp[i-1] ---> dp[i] = dp[i-1] + 1
// if i - j <= dp[i-1] ---> dp[i] = i - j
if(s.length() == 0) return 0;
vector<int> dp(s.length(),0);
dp[0] = 1;
int res = 1;
for(int i=1; i<s.length(); ++i){
int j = i-1;
for(; j>=0; --j){
if(s[j] == s[i]){
break;
}
}
if(i - j > dp[i-1]){
dp[i] = dp[i-1]+1;
}else{
dp[i] = i-j;
}
res = max(dp[i], res);
}
return res;
}
};
- 滑动窗口
class Solution {
public:
int lengthOfLongestSubstring(string s) {
// 滑动窗口
// 对于 s = "abcabcbb", 如果滑动窗口为"abc"则满足,但是滑动到下一个a,发现不满足,所以要移出去之前的a。
if(s.length() == 0) return 0;
int res = 1;
unordered_set<int> lookup;
int l = 0;
for(int i=0; i<s.length(); ++i){
while(lookup.find(s[i]) != lookup.end()){
lookup.erase(s[l++]);
}
res = max(res, i-l+1);
lookup.insert(s[i]);
}
return res;
}
};
76. 最小覆盖子串
给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。
注意:
对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。
如果 s 中存在这样的子串,我们保证它是唯一的答案。
示例 1:
输入:s = “ADOBECODEBANC”, t = “ABC”
输出:“BANC”
解释:最小覆盖子串 “BANC” 包含来自字符串 t 的 ‘A’、‘B’ 和 ‘C’。
示例 2:
输入:s = “a”, t = “a”
输出:“a”
解释:整个字符串 s 是最小覆盖子串。
示例 3:
输入: s = “a”, t = “aa”
输出: “”
解释: t 中两个字符 ‘a’ 均应包含在 s 的子串中,
因此没有符合条件的子字符串,返回空字符串。
class Solution {
public:
string minWindow(string s, string t) {
// need表示当前滑动窗口中需要各元素的数量,初始值为t中字母的数量
// need等于0表示刚好包含此字母,小于0则表示有多余此字母
unordered_map<char, int> need;
for (char& ch : t) {
need[ch] += 1;
}
// needCnt表示所需元素的总数量,0表示窗口中包含了所需元素
int needCnt = t.length();
int resL = 0, resR = INT32_MAX;
int l = 0;
for (int r = 0; r < s.length(); r++) {
if (need[s[r]] > 0) {
// 表示s[r]为所需元素
needCnt--;
}
need[s[r]]--;
// 不断增加r使得滑动窗口增大,直到窗口包含了T的所有元素
if (needCnt == 0) {
while (true) {
// 不断增加l使得滑动窗口变小,排除多余元素
char c = s[l];
if (need[c] == 0) {
break;
}
need[c]++;
l++;
}
if (r - l < resR - resL) {
// 更新窗口左右指针
resR = r;
resL = l;
}
need[s[l]]++;
needCnt++;
l++;
}
}
return resR>s.length() ? "" : s.substr(resL, resR-resL+1);
}
};