约数个数:每个质因数的次数+1的乘积。
2e9<2x3x5x7x11x13x17x19x23;
2e9<pow(2,31);
last其实是最多扫30次。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
//求出第一个约数个数最大的数======================
const int N=2e5+10;
int n;
int maxn,number;
int pri[9]={2,3,5,7,11,13,17,19,23};
//指数之和不超过30
void dfs(int u,int last,int p,int s)//质数扫描指针 次数还剩几次,number,约数个数
{
if(s>maxn||(s==maxn&&p<number))
{
number=p;
maxn=s;
}
//全都扫了一遍
if(u==9) return;
for(int i=1;i<=last;i++)
{
if((ll)pri[u]*p>n) break;
p*=pri[u];
dfs(u+1,i,p,s*(i+1));//这里如果不走dfs,那么就会走pow(2,30);
}
}
int main()
{
cin>>n;
dfs(0,30,1,1);
cout<<number;
return 0;
}
2022.1.11又做了一次,觉得是个好题,结合约数+dfs。
HAOI2007反素数ANT
求约数个数的方法:
设这个数是由x1,x2,x3…乘起来的(xi都是素数),那么一个数的约数个数就是这些素数的指数次数+1的乘积;
如 36 = 22*32,那么约数个数为(2+1)*(2+1)=9;
这里妙就妙在,dfs中:
- 用(i+1)(i代表某个质数乘起来的次数)巧妙地求出约数个数
- u,代表乘到的质数数组下标指针,同时u>9次绝对会超过数据范围(事实上,231>2e9),所以既把u作为下标指针,又把它当作跳出dfs的条件。
注意,dfs之后num的值要更新,因为还有下一次循环。
不要暴力求约数,一定会T。
#include<bits/stdc++.h>
using namespace std;
#define fir(i,a,n) for(int i=a;i<=n;i++)
typedef long long ll;
const int N=1e5+10;
int n;
int pri[10]={2,3,5,7,11,13,17,19,23,29};
int ans;
int yuee;
void dfs(ll num,int yue,int u)//要巧妙地把求约数转换为(i+1)的连乘
{
if(u>9) return;//对应的是pri数组的9
if(num>n) return;
if(yue>yuee)
{
yuee=yue;
ans=num;
}
if(yue==yuee&&ans>num)
{
ans=num;
}
for(int i=1;i<32;i++)
{
if(num*pri[u]>n) break;
dfs(num*pri[u],yue*(i+1),u+1);
num*=pri[u];//这一步不能漏 因为还要继续循环
}
}
int main()
{
cin>>n;
dfs(1,1,0);
cout<<ans;
return 0;
}