
【猴博士】概率论与数理统计笔记
文章平均质量分 75
karshey
平平无奇打工人。
展开
-
【概率论与数理统计】期末复习抱佛脚:公式总结与简单例题(完结)
不全。截图来自猴博士的视频(B站搜猴博士即可)。我的稍微完整一些的笔记(例题具体解答在这里面):【猴博士】概率论与数理统计 笔记总结(完结)多图预警。有放回:无放回:题干类型如下:解法:题干中两道例题的答案:17/253/4还有两道例题:1/Π+1/29/32例1:答:0.3;例2:答:5/12例1:答:0.2.P(M∣N)=P(MN)P(N)P(M|N)=\frac{P(MN)}{P(N)}P(M∣N)=P(N)P(MN)分母是竖线后的概率,分子是原创 2022-06-12 13:15:59 · 6887 阅读 · 1 评论 -
【概率论与数理统计】猴博士 笔记 p41-44 统计量相关小题、三大分布的判定、性质、总体服从正态分布的统计量小题
题干:解法:注意,S的分母是n-1接下来练习套公式:例1:直接背公式。例2:解:除X,S,n外有其他位置数的就不是统计量。则,D。例3:解:用到的考点:还有正态分布的方差。答案:n-1题型如下:题解:只有三种分布:无脑做题的方法:接下来进行套公式:例1:解:注意要标准化。例2:解:一看就知道是X分布,因为不是分数。例3:解:这里也是注意要标准化。题干:已知某分布,求…?题解:接下来进行套公式:例1:解:就是进行一些数学公原创 2022-06-11 01:11:15 · 3931 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p38-40 切比雪夫不等式、大数定律、中心极限定理
文章目录切比雪夫不等式大数定律中心极限定理切比雪夫不等式题干特征:求的P里面有不等式求的概率的事件是某个绝对值求的P里面的不等式符号与外面的不等式符号相反满足以上特征就要用到切比雪夫不等式。做法:注意:公式求出来的是绝对值大于等于a的概率下面练习一下套公式:例1:解:直接套公式.答案1/4例2:解:E(X+Y)=EX+EY=0;满足条件,可以直接套公式。由上节课内容:已知相关系数和方差,可求协方差Cov(X,Y).已知DX,DY,Cov(X,Y),可求D(X+原创 2022-05-15 19:51:51 · 4342 阅读 · 4 评论 -
【概率论与数理统计】猴博士 笔记 p36-37 协方差、相关系数、不相关、相互独立时的期望和方差
文章目录协方差、相关系数不相关、相互独立时的期望和方差协方差、相关系数接下来做几道例题,练习一下套公式:例1:解:前4个就是简单的套公式:第5个有点类似分配律:Cov(2X+3Y,4X+5Y)=8Cov(X,X)+10Cov(X,Y)+12Cov(X,Y)+15Cov(Y,Y)Cov(2X+3Y,4X+5Y)=\\8Cov(X,X)+10Cov(X,Y)+12Cov(X,Y)+15Cov(Y,Y)Cov(2X+3Y,4X+5Y)=8Cov(X,X)+10Cov(X,Y)+12Cov(原创 2022-05-07 16:58:35 · 8111 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p26-28 F、f的性质、一、二维连续型求期望、方差
F、f的性质做法:上述公式的原理:做一些题目来练习套公式。例1:解:P{X≤2}=F(2)=1−e−2P\{X\le2\}=F(2)=1-e^{-2}P{X≤2}=F(2)=1−e−2例2:解:P{0≤X≤2}=F(2)−F(0−)=F(2)−F(0)=1−e−2P\{0\le X\le2\}=F(2)-F(0^{-})=F(2)-F(0)=1-e^{-2} P{0≤X≤2}=F(2)−F(0−)=F(2)−F(0)=1−e−2例3:解:大概就是这样判断:F(1原创 2022-04-18 16:14:00 · 4005 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p24-25 条件概率密度函数、求两个随机变量形成的函数的分布
条件概率密度函数题型如下:已知概率密度,求条件概率密度已知x怎么样的情况下y服从的概率(或y怎么样的情况下x服从的概率),求f(x,y)步骤:对于后两个,是在哪个字母的条件下,哪个字母就在后面。即,如果是在x=???的条件下,那么就选图中第三条方法。其中:1、2条符合条件概率3、4条是1、2条的变形:把分母乘去等号另一边为什么1、2条中求f(x|y),则要推出x的范围?因为y是已知条件,它的概率是1。我们要求x,所以也要推x的范围。接下来看这三道例题,练习套公式:例1:原创 2022-04-18 14:49:23 · 8244 阅读 · 0 评论 -
【猴博士】概率论与数理统计 笔记总结(完结)
前言视频在B站看视频在MOOC看是笔记,可能不全。笔记【概率论与数理统计】猴博士 笔记 p1-p2 古典概型、几何概型原创 2022-04-16 17:14:15 · 35191 阅读 · 2 评论 -
【概率论与数理统计】猴博士 笔记 p33-35 超几何分布、正态分布、二项分布
超几何分布H例1:设随机变量X~H(5,3,2),求P{X=1}、EX、DX.解:题意是:共有5个球,其中3个目标球,共取2次,取到1个目标球的概率。P{X=1}=35EX=65DX=925P\{X=1\}=\frac{3}{5}\\EX=\frac{6}{5}\\DX=\frac{9}{25}P{X=1}=53EX=56DX=259正态分布N一维正态分布总体考点公式如下:对第1点:例1:解:套公式。(其实这两个概率加起来为1)例2:解:0.5,0.5原创 2022-04-16 17:08:03 · 4450 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p29-32 均匀分布、泊松分布、指数分布、几何分布
均匀分布U题型:已知某随机变量满足某分布,求对应的概率,期望,方差。也是套公式:例1:设随机变量X~U[2,5],求P{X>=4}、EX、DX。套公式得:p{x≥4}=13EX=72DX=34p\{x\ge4\}=\frac{1}{3}\\EX=\frac{7}{2}\\\\DX=\frac{3}{4}p{x≥4}=31EX=27DX=43例2:设随机变量K在区间(1,6)上服从均匀分布,则方程x2+kx+1=0有实根的概率是__。解:45\frac{4}{5原创 2022-04-16 14:14:41 · 7543 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p21-23 二维连续型求边缘分布函数和密度函数,已知两个边缘密度函数求f(x,y)
二维连续型求边缘分布函数题型如下:给出F(x,y),让我们求F(x),F(y)步骤:FX(x)=F(x,+∞)FY(y)=F(+∞,y)F_X(x)=F(x,+∞)\\F_Y(y)=F(+∞,y)FX(x)=F(x,+∞)FY(y)=F(+∞,y)直接做上面那道例题:二维连续型求边缘密度函数题干:给出F(x,y),让我们求f(x),f(y)方法:fX(x)=∫−∞+∞f(x,y)dyfY(y)=∫−∞+∞f(x,y)dxf_X(x)=\displaystyle \int^{原创 2022-04-12 20:48:42 · 9582 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p17-20 一、二维连续型:已知F,求f;已知f,求f
一维连续型已知F,求f题型:步骤:f是F的导数,对F求导即可得到f。例1:解:例2:解:一维连续型已知f,求f题型:已知f(x),求f(y)步骤:(注意,要满足要求:Y=g(X)满足单增或单减才能用公式法)看起来有点抽象,我们看一道例题:此题中Y=g(X)是Y=2X,是单增的,所以可以用公式法。第一步:通过Y=g(X)得出X=h(Y):X=Y2X=\frac{Y}{2}X=2Y第二步:用h(Y)替换f(x)各式子中的x。原式为fX(x)={0,x≤0e−x原创 2022-04-11 15:36:37 · 3959 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p15-16 一、二维连续型求概率
一维连续型求概率题型如下:解题步骤如下:其实就是求积分举例1的例子:例2:解:例3:解:注意:要把Y变为X计算,且要分类讨论y是否大于0.例4:解:去掉max和min的方法:去掉多余项的方法:假设要求AB两项同时发生的概率,当多余项(A)必然发生时,两个事件同时发生的概率其实就是B发生的概率。具体解:例5:(猴博士:大概是一维连续型求概率的最难的题型)解:注意,对P{2≤y ,x≤1}来说,2≤y 是一个确定的范围,所以它算是原创 2022-04-10 20:14:08 · 5605 阅读 · 1 评论 -
【概率论与数理统计】猴博士 笔记 p11-14 一维、二维离散型求分布函数和期望、方差
一维离散型求分布函数通过一道例题来掌握这种题怎么做:解:一些补充:FX(x)表示的是P{X≤x}F_X(x)表示的是P \{X \le x\}FX(x)表示的是P{X≤x}如果只有X一个未知数,则X可以省略分布律要从小到大排列。二维离散型求分布函数做题步骤:通过例题学习如果求二维的分布函数:什么叫做以左上角为起点,尽可能多做长方形:若有2x2的分布律,则可以作4个长方形。找每个长方形右下角代表的x,y的取值:注意,左闭右开求和:补充:F(x,y)=F{原创 2022-04-09 22:00:25 · 8399 阅读 · 1 评论 -
【概率论与数理统计】猴博士 笔记 p8-10 一维、二维离散型求分布律、二维离散型求边缘分布律
一维离散型求分布律原创 2022-04-09 20:50:42 · 6864 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p5-7 条件概率,全概率公式,贝叶斯公式
条件概率题型特点:有竖线。意思:在竖线后面的事件百分之百发生的情况下,竖线前面的事件发生的概率。如:解法:P(M∣N)=P(MN)P(N)P(M|N)=\frac{P(MN)}{P(N)}P(M∣N)=P(N)P(MN)分母是竖线后的概率,分子是竖线前事件和竖线后事件同时发生的概率。例1:解:3/4.画图。画图后发现:P(C‾)=23;P(ABC‾)=12;P(C‾)是包含P(AB)的P(\overline C)=\frac{2}{3};P(AB\overline C)原创 2022-04-07 21:11:02 · 5089 阅读 · 0 评论 -
【概率论与数理统计】猴博士 笔记 p3-4 事件的概率、事件的独立性
事件的概率引入:画图。假设方块面积为1,那么P(A)的数值就是点落在A上的概率。我们可以通过画图求出很多概率。如:P(A-B)=0.25,P(B-A)=0.23,P(A+B)=0.58;一些概念:例1:解:0.3。画个图就行。例2:解:5/12。一些补充:事件的独立性题干大概长这样,会告诉我们事件相互独立,或是两个事件发生的概率是它们各自发生的乘积。独立性相关知识:例1:解:0.2。画图+解方程。例2:解:2/3。画图+解方程。不原创 2022-04-07 19:23:42 · 3000 阅读 · 1 评论 -
【概率论与数理统计】猴博士 笔记 p1-p2 古典概型、几何概型
视频古典概型常见的古典概型题目分为:有放回无放回有放回对于有放回的题目,一般可以这样做:举个例子,如题:则它们的答案是:1.C44∗(25)4C_{4}^{4} *(\frac{2}{5})^4C44∗(52)42.C42∗(25)2∗C22∗(15)2C_{4}^{2} *(\frac{2}{5})^2*C_{2}^{2} *(\frac{1}{5})^2C42∗(52)2∗C22∗(51)23.C42∗(25)2∗C21∗(15)∗C11∗(15)原创 2022-04-07 17:04:06 · 9175 阅读 · 1 评论