AcWing 1294. 樱花 数学推导+约数个数

这篇博客探讨了一个编程问题,涉及计算小于给定数n的所有质数的分布。作者通过编写C++代码实现了求解过程,利用了质数筛法优化计算效率。在解决过程中遇到了整型溢出的问题,并进行了修正。最后,代码成功输出了质数分布并模运算的结果。
摘要由CSDN通过智能技术生成


参考1
参考2

中途WA了一发,MOD错了,中间过程爆int了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define pb push_back
#define fi first
#define se second
#define mem(a,x) memset(a,x,sizeof(a));
#define db double 
#define fir(i,a,n) for(int i=a;i<=n;i++)
#define debug(x) cout<<#x<<" "<<x<<endl;
const int inf=0x3f3f3f3f;
const int MOD=1e9+7;
//======================
const int N=1e6+10;
int pri[N],cnt=0,v[N];
int n;
ll ans=1;
void prime()
{
	for(int i=2;i<=1e3;i++)
	{
		if(!v[i])
		{
			pri[cnt++]=i;
			for(int j=i*i;j<=1e6;j+=i)
			{
				v[j]=1;
			}
		}
	}
	for(int i=1e3+1;i<=1e6;i++)
	{
		if(!v[i]) pri[cnt++]=i;
	}
}

void solve()
{
	for(int i=0;i<cnt;i++)
	{
		if(pri[i]>n) break;
		
		ll t=pri[i];
		ll temp=0;
		while(t<=n)
		{
			temp+=n/t;
			//temp%=MOD;
			t*=pri[i];
		}
		ans=(ans*(2*temp+1))%MOD;
	}
	cout<<ans%MOD;
}
int main()
{
	prime();
	cin>>n;
	solve();
	return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

karshey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值