【概率论与数理统计】猴博士 笔记 p24-25 条件概率密度函数、求两个随机变量形成的函数的分布

本文详细阐述了条件概率密度函数的求解方法,包括边缘概率密度计算、已知条件下的概率求解,并通过例题说明如何应用公式。重点讲解了如何在给定条件下确定x的范围,以及二维连续型问题的边缘密度函数计算。涉及难点如边缘概率、条件概率f(y|x)的计算以及高维分布函数的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

条件概率密度函数

题型如下:

  • 已知概率密度,求条件概率密度
  • 已知x怎么样的情况下y服从的概率(或y怎么样的情况下x服从的概率),求f(x,y)

在这里插入图片描述
步骤:对于后两个,是在哪个字母的条件下,哪个字母就在后面。
即,如果是在x=???的条件下,那么就选图中第三条方法。
其中:

  • 1、2条符合条件概率
  • 3、4条是1、2条的变形:把分母乘去等号另一边
  • 为什么1、2条中求f(x|y),则要推出x的范围?因为y是已知条件,它的概率是1。我们要求x,所以也要推x的范围。

在这里插入图片描述
接下来看这三道例题,练习套公式:
例1:
在这里插入图片描述
解:
这道例题中要先求f(y),这是二维连续型求边缘概率密度的内容,详情可以看这里二维连续型求边缘密度函数

x的范围要用y来代入表达
在这里插入图片描述
例2:
在这里插入图片描述
解:
这里是已知x的条件,所以要用:
在这里插入图片描述
这里的“在X=x…的条件下,随机变量y服从f=…”,这里的f其实就是条件概率f(y|x)。

在这里插入图片描述

求两个随机变量形成的函数的分布

猴博士说,这节课很难,算是概率论里最难的题,考试不一定考的到,可以跳过。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

karshey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值