poj1321(dfs棋盘问题)

            

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1

Source

 
注释:类似八皇后的一道题,DFS+回溯。每次标记当前棋子所在列为不可放,然后搜索下一行即可,回溯时将当前列恢复为可放置,可以省掉每次初始化标记数组。我是47MS过的,据说有人用什么"棋盘多项式"可以0MS过,不过我不会
 
代码:
#include<stdio.h>
#include<string.h>
char sqr[9][9];
int N,n,num,nnum;
int vist[10]={0};
void dfs(int a,int b)
{
	int i,j;
	
	if(nnum==n)
	{
		 num++;
		return; 
	} 
	vist[b]=1;
	for(i=a+1;i<N;i++)
	{    
		for(j=0;j<N;j++)
		{    
			if(sqr[i][j]=='#' && vist[j]==0)
			{
				nnum++;
			    dfs(i,j);
				nnum--;
			}
		}
	}
   vist[b]=0;
}
void main()
{
	while(scanf("%d%d",&N,&n)!=EOF&&(N!=-1&&n!=-1))
	{
		int i,j;
		for(i=0;i<N;i++)
		scanf("%s",sqr[i]);
		num=0;
		for(i=0;i+n<=N;i++)
			for(j=0;j<N;j++)
			 if(sqr[i][j]=='#')
			  {
				  nnum=1;
				  dfs(i,j);
			  }
	  	printf("%d\n",num);
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值