Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
Source
注释:类似八皇后的一道题,DFS+回溯。每次标记当前棋子所在列为不可放,然后搜索下一行即可,回溯时将当前列恢复为可放置,可以省掉每次初始化标记数组。我是47MS过的,据说有人用什么"棋盘多项式"可以0MS过,不过我不会
代码:
#include<stdio.h>
#include<string.h>
char sqr[9][9];
int N,n,num,nnum;
int vist[10]={0};
void dfs(int a,int b)
{
int i,j;
if(nnum==n)
{
num++;
return;
}
vist[b]=1;
for(i=a+1;i<N;i++)
{
for(j=0;j<N;j++)
{
if(sqr[i][j]=='#' && vist[j]==0)
{
nnum++;
dfs(i,j);
nnum--;
}
}
}
vist[b]=0;
}
void main()
{
while(scanf("%d%d",&N,&n)!=EOF&&(N!=-1&&n!=-1))
{
int i,j;
for(i=0;i<N;i++)
scanf("%s",sqr[i]);
num=0;
for(i=0;i+n<=N;i++)
for(j=0;j<N;j++)
if(sqr[i][j]=='#')
{
nnum=1;
dfs(i,j);
}
printf("%d\n",num);
}
}